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1.0 PURPOSE
This Models and Methods Summary provides a detailed description of the mathematical
models and numerical methods employed by the FEHM application.

2.0 DEFINITIONS AND ACRONYMS

2.1 Definitions
FEHM. Finite element heat and mass transfer code (Zyvoloski, et al. 1988).

FEHMN. YMP version of FEHM (Zyvoloski, et al. 1992).

2.2 Acronyms
LANL. Los Alamos National Laboratory.

RTD. Residence time distribution.

RTTF. Residence time transfer function.

SOR. Simultaneous over-relaxation.

YMP. Yucca Mountain Site Characterization Project.

3.0 REFERENCES
Birdsell, K. H., K. Campbell, K. G. Eggert, and B. J. Travis, “Simulation of Radionuclide
Retardation at Yucca Mountain Using a Stochastic Mineralogical/Geochemical Model,”
Proceedings of the First International Meeting on High Level Radioactive Waste
Management, Las Vegas, Nevada, April 8-12 (1990).

Brigham, W. E., “Mixing Equations in Short Laboratory Cores,” Soc. Pet. Eng. J. 14:
91-99 (1974).

Brownell, D. H., S. K. Garg, and J. W. Pritchett, “Computer Simulation of Geothermal
Reservoirs,” Paper SPE 5381, Proceedings of the 45th California Regional Meeting of the
Soc. Pet. Eng. of AIME, Ventura, California (1975).

Bullivant, D. and G.A. Zyvoloski, “An Efficient Scheme for the Solution of Linear
System Arising from Coupled Differential Equations,” Los Alamos document, LA-UR-90-
3187 (1990).

Case, C. M., Physical Principles of Flow in Unsaturated Porous Media, Clarendon Press,
Oxford (1994).

Corey, A. T., “The Interrelation Between Gas and Oil Relative Permeabilities,” Prod.
Mon. 19: 38-41 (1954).

Dalen, V., “Simplified Finite-Element Models for Reservoir Flow Problems,” Soc. Pet.
Eng. J. 19: 333-343 (1979).

Engesgaard, P. and K. L. Kipp, “A Geochemical Model for Redox-controlled Movement of
Mineral Fronts in Ground-water Flow Systems: A Case of NitrateRemoval by Oxidation
of Pyrite,” Water Resour. Res. 28: 3308-3327 (1992).

Friedly, J. C., and J. Rubin, “Solute Transport with Multiple Equilibrium-Controlled or
Kinetically Controlled Chemical Reactions,” Water Resour. Res. 28(6): 1935-1953 (1992).

Fung, L. S. K., L. Buchanan, and R. Sharma, “Hybrid-CVFE Method for Flexible -Grid
Reservoir Simulation,” Soc. Pet. Eng. J. 19: 188-199 (1994)
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Gangi, A. F., “Variation of Whole and Fractured Porous Rock Permeability with
Confining Pressure,” Rock Mech. Sci. and Geomech. Abstr. 15: 249-157 (1978).

Harr, L., J. Gallagher, and G. S. Kell, NBS/NRC Steam Tables, Thermodynamics, and
Transport Properties and Computer Programs for Vapor and Liquid States of Water,
Hemisphere Press (1984).

Hinton, E., and D. R. J. Owen, An Introduction to Finite Element Computations,
Pineridge Press, Swansea, Wales (1979).

Kinzelbach, W., W. Schafer, and J. Herzer, “Numerical Modeling of Natural and
Enhanced Denitrification Processes in Aquifers,” Water Resour. Res., 27: 1123-1135
(1991).

Klavetter, E. A., and R. R. Peters, “Estimation of Hydrologic Properties of an
Unsaturated Fractured Rock Mass,” Sandia Report SAND84-2642 (1986).

Lichtner, P. C., “Continuum Formulation of Multicomponent-multiphase Reactive
Transport,” Rev. in Mineralogy, Vol. 34, Chapter 1, 1-81 ( 1996).

Lu, N., “A Semianalytical Method of Path Line Computation for Transient Finite-
Difference Groundwater Flow Models,” Water Resour. Res. 30(8): 2449-2459 (1994).

Maloszewski, P., and A. Zuber, “On the Theory of Tracer Experiments in fissured Rocks
with a Porous Matrix,” J. Hydrol. 79: 333-358 (1985).

Mangold, D. C., and C. F. Tsang, “A Sumary of Subsurface Hydrological and
Hydrochemical Models,” Rev. Geophys., 29: 51-79 (1991 ).

Mercer, J. W., and C. R. Faust, “Simulation of Water- and Vapor-Dominated
Hydrothermal Reservoirs,” Paper SPE 5520, Proceedings of the 50th Annual Fall
Meeting of the Soc. Pet. Eng. of AIME, Dallas, Texas (1975).

Moench, A. F., “Double-Porosity Models for a Fissured Groundwater Reservoir with
Fracture Skin,” Water Resour. Res. 20(7): 831-846 (1984).

Neretnicks, I., “Diffusion in the Rock Matrix: An Important Factor in Radionuclide
Migration?”, J. Geophys. Res. 85(B8): 4379-4397 (1980).

Nitao, J., “Numerical Modeling of the Thermal and Hydrological Environment Around a
Nuclear Waste Package Using the Equivalent Continuum Approximation: Horizontal
Emplacement,” Lawrence Livermore National Laboratory Report UCID-21444 (1988).

Plummer, L. N., and E. Busenberg, “The Solubilities of Calcite, Argonite, and Vaterite
in CO2-H2O Solutions Between 0 and 90oC, and an Evaluation of the Aqueous model for
the System CaCO3-H2O,” Geochim. et Cosmochim. Acta, 46: 1101 (1982).

Polzer, W. L., M. G. Rao, H. R. Fuentes, and R. J. Beckman, “Thermodynamically
Derived Relationships Between the Modified Langmuir Isotherm and Experimental
Parameters,” submitted to Environmental Science and Technology (1992).

Pruess, K., “TOUGH2 - A General-Purpose Numerical Simulator for Multiphase Fluid
and Heat Flow,” Lawrence Berkeley Laboratory Report LBL-29400 (1991).

Reeves, M. (ed), “Review and Selection of Unsaturated Flow Models”, Intera Document
B00000000-01425-2200-00001 Rev. 00, (1993).

Reimus, P. W., “The Use of Synthetic Colloids in Tracer Transport Experiments in
Saturated Rock Fractures,” Ph.D. Thesis, The University of New Mexico, Albuquerque,
New Mexico (1995).

Robinson, B., "Model and Methods Summary for the SORBEQ Application," Los Alamos
document SORBEQ MMS, ECD-20 (1993).
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Robinson, B. A., “A Strategy for Validating a Conceptual Model for Radionuclide
Migration in the Saturated Zone Beneath Yucca Mountain,” Rad. Waste Manag. Envir.
Rest. 19: 73-96 (1994).

Starr, R. C., R. W. Gillham, and E. A. Sudicky, “Experimental Investigation of Solute
Transport in Stratified Porous Media 2. The Reactive Case,” Water Resour. Res. 21(7):
1043-1050 (1985).

Steefel, C.I. and A.C. Lasaga, “A Coupled Model for Transport of Multiple Chemical
Species and Kinetic Precipitation/dissolution Reactions with Application to Reactive
Flow in Single Phase Hydrothermal Systems,” American Journal of Science, 294: 529-
592 (1994).

Sychev, V. V., et al., Thermodynamic Properties of Air, Hemisphere Publishing Corp.
(1988).

Tang, D. H., E. O. Frind, and E. A. Sudicky, “Contaminant Transport in Fractured
Porous Media: Analytical Solution for a Single Fracture,” Water Resour. Res. 17(3):
555-564 (1981).

Tebes-Stevens, C., A. J. Valocchi, J. M. VanBriesen, and B. E. Rittmann,
“Multicomponent Transport with Coupled Geochemical and Microbiological Reactions:
Model Description and Example Simulations,” submitted to J. Hyrol. (1998).

Tompson, A. F. B., and L. W. Gelhar, “Numerical simulation of Solute Transport in
Three-Dimensional, Randomly Heterogeneous Porous Media,” Water Resour. Res., 26,
10, 2541-2562 (1990).

van Genuchten, M. T., “A Closed Form Equation for Predicting Hydraulic Conductivity
of Unsaturated Soils,” Soil Sci. Soc. Am. J. 44: 892-898 (1980).

Warren, J. E., and P. J. Root, “The Behavior of Naturally Fractured Reservoirs,” Soc.
Pet. Eng. J. 3: 245-255 (1963).

Weeks, E. P., “Effect of Topography on Gas Flow in Unsaturated Fractured Rock:
Concepts and Observations,” Proceedings of the American Geophysical Union
Symposium on Flow and Transport in Unsaturated Fractured Rock, D. Evans and T.
Nicholson, Eds., Geophysical Monograph 42: AGU (1987).

Wolery, T. J., “EQ3NR, A Computer Program for Geochemical Aqueous Speciation-
Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation
(Version 7.0),” Technical Report UCRL-MA-110662-PT-IV, Lawrence Livermore
National Laboratory (1992).

Yeh, G. T., and V. S. Tripathi, “A Critical Evaluation of Recent Developments in
Hydrogeochemical Transport Models of Reactive Multichemical Components,” Water
Resour. Res. 25: 93-108 (1989).

Young, L. C., “A Finite Element Method for Reservoir Simulation,” Soc. Pet. Eng. J. 21:
115-128 (1981).

Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, London (1977).

Zienkiewicz, O. C., and C. J. Parekh, “Transient Field Problems - Two and Three
Dimensional Analysis by Isoparametric Finite Elements,” Int. J. Numer. Methods Eng.
2: 61-70 (1973).

Zyvoloski, G., “Finite Element Methods for Geothermal Reservoir Simulation,” Int. J.
Numer. Anal. Methods Geomech. 7: 75-86 (1983).

Zyvoloski, G. A., and Z. V. Dash, “Software Verification Report FEHMN Version 1.0,”
LA-UR-91-609 (1991).
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Zyvoloski, G. A., Z. V. Dash, and S. Kelkar, "FEHMN 1.0: Finite Element Heat and Mass
Transfer Code," LA-12062-MS, Rev. 1 (1992).

Zyvoloski, G. A., Z. V. Dash, and S. Kelkar, “FEHM: Finite Element Heat and Mass
Transfer Code,” LA-11224-MS (1988).

Zyvoloski, G. A., M. J. O’Sullivan, and D. E. Krol, “Finite Difference Techniques for
Modeling Geothermal Reservoirs,” Int. J. Numer. Anal. Methods Geomech. 3, 355-366
(1979).

Zyvoloski, G. A., and B. A. Robinson, GZSOLVE Application, Los Alamos National
Laboratory software documents ECD-97 (1995).

4.0 NOTATION
Variables used in derivation of the component and numerical model are enumerated in
Table I with reference to the equations in which they appear.

Table I.  Nomenclature

General notation conventions

Approximation of Α

Vector Α

Two dimensional array Α

One dimensional array/vector Α

Subscripts

a Subscript denoting air properties

b Subscript denoting biomass

c Subscript denoting concentration

cap Subscript denoting capillary values

dry Subscript denoting value at 0 saturation

e Subscript denoting energy

f Subscript denoting fracture properties

flow Subscript denoting properties of flowing fluid

i, j, k Subscripts denoting nodal position (node indices)

i Subscript denoting complex

j, k, m Subscripts denoting component

l Subscript denoting liquid properties

lr Subscript denoting residual liquid

m Subscript denoting mass or matrix property for dual porosity formulations

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]

Α̃

Α

Α[ ]

Α{ }
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max Subscript denoting maximum value

min Subscript denoting minimum value

P Subscript denoting derivative with respect to pressure

p Subscript denoting fluid phase

p Subscript denoting precipitation

r Subscript denoting rock properties

ref Subscript denoting value at reference conditions

S Subscript denoting derivative with respect to saturation

s Subscript denoting slope of a linear relation

sat Subscript denoting saturation dependence

T Subscript denoting derivative with respect to temperature or temperature dependence

v Subscript denoting vapor properties

 vr Subscript denoting residual vapor

w Subscript denoting water properties

x, y, z Subscripts denoting coordinate direction

η Subscript denoting noncondensible gas

0 Subscript denoting initial value

1, 2, . . ., m,
m+1, . . ., n

Subscripts denoting the specie or component (i.e., nth component)

Superscripts

UP Superscript denoting upstream-weighted value

0, k, k+1 Superscripts denoting iteration (i.e., kth iteration)

n, n+1 Superscripts denoting timestep (i.e., nth timestep)

Parameters

A Internode area projection for finite volume calculation (L2) [Figure 3]

[A] Solution matrix for system of nonlinear equations [Equations (47) - (54), (64) - (72)]

Ac
Concentration (solute) accumulation term  [Equations (36), (75), (76), (80)]

Ae
Energy accumulation term  [Equations (4), (5), (10), (16), (26)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]

moles

L3
-------------- 

 

M

Lθ2
--------- 
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Am
Mass accumulation term  [Equations (1), (2), (9), (25)]

As Reactive surface area (L2) [Equation (93)]

Aη Noncondensible gas accumulation term  [Equations (19), (20), (27)]

aij Stoichiometric coefficients used in reaction rate model [Equations (79), (85), (87)]

a Air conservation variable [Equations (50), (51)]

b First order microbial decay coefficient [Equation (90)]

{ b} Residual vector, right hand side (forcing function) for system of linear equations
[Equations (46), (64) - (72)]

C Concentration (solute) [Equations (36), (37), (39), (73) - (76), (78) - (82), (85),

(87), (93), (106), (109), (110),Table II]

Chemical formula for aqueous comonent [Equation (85)]

Normalized concentration [Equations (99), (100)]

[ ] Capacitance matrix [Equations (25), (26), (27), (32), (36)]

c Compressibility  [Equation (147)]

c Concentration  [Equations (79), (86) - (88), (91), (92)]

cp Heat capacity/Specific heat  [page 21, Equations (130), (131)]

Solute diffusion coefficient  [Equation (77)]

Combination of molecular diffusion and dispersivity  [Equation (77)]

Dva Air water diffusivity  [Equations (20), (21), (27), (30), (35)]

Dc Dispersion coefficient for tracer  [Equations (36), (38), (76), (80)]

De Energy transmissibility term  [Equations (10), (12), (29), (34)]

Effective dispersion coefficient of a solute [Equation (96)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]

M

L3
------ 

 

M

L3
------ 

 

moles
M

-------------- 
 

Ĉ

Ĉ

Ĉ

Lθ2

M
--------- 

 

moles
M

-------------- 
 

L2

θ2T
---------

 
 
 

DAB
L2

θ------ 
 

Dcl
L2

θ------ 
 

L2

θ------ 
 

L2

θ------ 
 

L2

θ------ 
 

Deff
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Dm
Mass transmissibility term  [Equations (9), (11), (12), (20), (22), (23), (28), (33),
(35), (37), (39), (76)]

d Internode distance for finite volume calculation (L) [Figure 3]

E Young’s modulus  [Equation (78)]

{ F} Equation residuals [Equations (25), (26), (27), (36), (42) - (54)]

l2 norm of residuals (square root of the sum of the residuals squared) [Equations (44),
(45)]

Jacobian matrix for nonlinear system [Equation (43)]

Flux vector for concentration equations  [Equations (73), (80)]

Flux vector for energy equation  [Equations (4), (6)]

Flux vector for mass equation  [Equations (1), (3)]

Flux vector for noncondensible gas equation  [Equation (17)]

Function at time t [Equation (24)]

Derivative of with respect to time [Equation (24)]

Gk Vapor concentration [Equations (83), (107), (109)]

{ G} Gravity term coefficients [Equations (25), (26), (27), (33) - (36), (39)]

g
Acceleration of gravity [Equations (9), (10), (20), (22), (23), (25), (26), (27), (36),

(76)]

g times the unit vector in the gravitational (z) direction [Equations (7), (8)]

h Enthalpy  [Equations (6), (12), (13), (62), (63), (130), (132), (133)]

Im
Mass flow impedance  [Equation (40)]

Ie
Heat flow impedance  [Equation (41)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]
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K Thermal conductivity  [Equations (6), (16), (26), (31), (151), (152), page 26]

, Monod half-maximum-rate concentrations [Equation (89)]

Distribution coefficient [Equation (88)]

KH Henry’s law constant  [Equation (135)]

Kd Retardation coefficient (linear adsorption) [Table II]

Equilibrium formation constant [Equations (86), (87)]

Ksp Solubility product [Equation (93)]

k Intrinsic rock permeability  [Equations (7), (8), (11), (61), (62), (63), (150)]

k+ Rate constant [Equation (93)]

, Forward and reverse reaction rate constants [Equations (111) - (113)]

Mass transfer coefficient [Equation (88)]

Radioactive decay rate constant [Equation (105)]

Flow path length (m)

Lf, Lf0, Lf1, Lf2
Length scales used in dual porosity and double porosity / double permeability
problems [Equations (56), (58), (59), (60), Figure 4]

Ll Advection dispersion operator [Equations (81) - (83), (106), (107)]

Fluid mass in a cell (kg) [Equation (94)]

Immobile concentration (mass solute per mass rock matrix) [Equation (84), (108),
(109)]

m Concentration  [Equations (88) - (91)]

m Exponent used in Gangi stress model [Equation (148)]

Outlet mass flow rate from one cell to another [Equation (94)]

[N] Finite element shape function [page 25, Equations (28) - (34), (37) - (39)]

Nc Number of aqueous components [Equations (79), (80), (85)-(87), (92)]

Nim Number of immobile components [Equation (84)

Nn Number of spatial grid points [page 44]

Nv Number of vapor components [Equation (83)

Nx Number of aqueous complexes [Equations (79), (87)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]
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n Experimental parameter used in van Genuchten relative permeability and capillary
pressure models [page 68, page 69]

P
Pressure [Equations (7) - (10), (20), (22), (23), (25), (26), (27), (36), (40), (47) -

(54), (61), (62), (63), (76), (121) - (124), (128), (135), (144) - (147), (149)]

Pc Closure stress for use in Gangi stress model (ML) [Equations (148), (149)]

Peclet number for dispersion [Equations (99) and (100)]

Qp Solubility product {Equations (92), (93)]

qc
Concentration source term  [Equations(36), (74), (76)]

qe
Energy source term  [Equations (4), (10), (13), (16), (26), (41)]

Solute flux term from fracture to matrix in particle tracking model development
[Equation (102)]

qm
Mass source term  [Equations (1), (9), (14), (22), (23), (25), (40), (89)]

qη Noncondensible gas source term  [Equations (18), (20), (27)]

R Kinetic reaction source-sink term [Equations (80), (82)-(84), (88) - (90), (106) - (110)]

R Universal gas constant (8.314 kJ/mol-K) [Equation (127)]

Sorption retardation factor [Equation (95)]

Rp Relative permeability [Equations (7), (8), (11), (15), (138) - (143)]

r, rb Parameters used in nonlinear adsorption model (Langmuir) [Table II]

S Saturation [Equations (2), (5), (19), (22), (23), (53) - (54), (80), (138) - (145)]

T Temperature [Equations (6), (16), (41), (47), (48), (50) - (52), (121) - (124), (128),
(130), (131), (149)]

[T] Stiffness matrix [Equations (25) - (29), (36), (37)]

 Tff1, Tf1f2 Transfer terms in dual porosity solution [Equations (59) - (63)]

t Time  [Equations (1), (4), (9), (10), (16), (20) - (27), (36), (76), (106) - (108)]

u Internal energy  [Equation (5)]

V Integral volume [Equations (28) - (34), (37) - (39)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]
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Vf
Volume fraction for fractures in a dual porosity and double porosity / double
permeability problems [Equations (55) - (58)]

Vf0, Vf1, Vf2
Volume fractions for the matrix volumes used in dual porosity and double porosity /
double permeability problems [Equations (55) - (58)]

VT Total volume of computational cell (L3) [[Equation (59), (60)]

Superficial velocity in one-dimensional model used in particle tracking model
development [Equation (96)]

Velocity vector  [Equations (3), (6) - (8), (17)]

Darcy velocity of liquid phase, x-direction [Equation (77)]

w Weighting factor for time discretization [Equation (24)]

X Pressure or temperature variable in rational function approximation for saturation
equations [Equations (125), (126)]

Chemical formula for aqueous complex [Equation (85), (86)]

Solution vector, [Equations (42), (43), (46), (64) - (72)]

Normalized distance along flow path [Equation (99)]

Y Microbial yield coeeficient [Equation (90)]

Y Polynomial in numerator of rational function approximation [Equations (121) - (126)]

Z Polynomial in denominator of rational function approximation [Equations (121) - (126)]

z Coordinate oriented in the direction of gravity [Equations (9), (10), (20), (33), (34),
(39), (76)]

α Coefficient of thermal expansion  [Equation (149)]

α1, α2 Coefficients used in sorption models [Equation (78), Table II]

Aquifer compressibility

Dispersivity of solute in transport calculations

Experimental parameter used in van Genuchten capillary pressure model [page 69]

β Exponent used in sorption models [Equation (78), Table II]

Activity coefficient for aqueous component [Equation (86)]

Fractional approach to equilibrium computed at an iteration in the reactive transport
model [Equation (94)]

Fractional approach to equilibrium specified for an equilibrium reaction [Equation (94)]

ε Tolerance taken for solution scheme [Equation (45)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]
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5.0 STATEMENT AND DESCRIPTION OF THE PROBLEM
The primary use of the FEHM application will be to assist in the understanding of flow
fields and mass transport in the saturated and unsaturated zones below the potential
Yucca Mountain repository. Studies in the saturated zone are prescribed in YMP-LANL-
SP-8.3.1.2.3.1.7 (the C-Wells project) and include use of the FEHM code to design and
analyze tracer tests (reactive and non-reactive) to characterize the flow field below
Yucca Mountain. Studies in the unsaturated zone are prescribed in YMP-LANL-SP-
8.3.1.3.7.1 and include the study of coupled processes (multicomponent flow and natural
convection).

Yucca Mountain is extremely complex both hydrologically and geologically. The
computer codes that are used to model flow must be able to describe that complexity.

η Mass fraction of air [Equations (2), (3), (9), (17) - (20), (27), (35), (132) - (136)]

θ Exponent used in the air/water diffusion model [Equation (21)]

Normalized time [Equations (99)and (100)]

Λ Parameter used in nonlinear adsorption model (Freundlich, modified Freundlich)
[Table II]

λ Parameter used in van Genuchten relative permeability and capillary pressure models
[Equation (142), page 69]

µ  Viscosity  [Equations (7), (8), (11), (15), (61), (62), (63), (136), (137)]

µp Stoichiometric coefficients used in reaction rate model [Equations (91) - (93)]

ν Fractional vapor flow parameter [Equations (14), (15)]

ρ
Density [Equations (3), (5), (7) - (11), (15), (17), (19) -(23), (61), (62), (63), (76),

(80), (128), (129), (134) ]

σ In situ stress  [Equation (149)]

τ Tortuosity factor in the air/water diffusion model [Equation (21)]

Particle age since entering the model domain [Equation (105)]

Fluid residence time in a cell (s) [Equation (94)]

Particle residence time in a cell (s) [Equation (94)]

Radioactive decay half-life

φ Porosity [Equations (2), (5), (19), (21) - (23), (80), (147), (148), (150)]

Matrix porosity in particle tracking model [Equation (102)]

Flow domain of the model [Equations (28) - (34), (37) - (39)]

Table I.  Nomenclature  (Continued)

* Units given in MLθT system of dimensions: mass [M], length [L], time [θ], temperature [T]
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For example, the flow at Yucca Mountain, in both the saturated and unsaturated zones
is dominated by fracture and fault flow in many areas. With permeation to and from
faults and fractures, the flow is inherently three-dimensional (3-D). Birdsell, et al.
(1990) presented calculations showing the importance of 3-D flow at Yucca Mountain.
Coupled heat and mass transport occurs in both the unsaturated and saturated zones.
In the near field region surrounding the repository, the coupled flow effects dominate
the fluid behavior. Here boiling, dryout, and condensation can occur (Nitao, 1988). In
the far field unsaturated zone, Weeks (1987) has described natural convection that
occurs through Yucca Mountain due to seasonal temperature changes. Heat and mass
transfer are also important in matching saturated zone models to temperature logs and
pressure tests and in modeling enhanced convection from repository heating.

The transport processes at Yucca Mountain are very complex. Various adsorption
mechanisms ranging from simple linear relations to nonlinear isotherms must be
incorporated in the transport models. Multiple interacting chemical species must be
modeled so that this structure can represent radioactive decay with daughter products
and coupled geochemical transport.

6.0 STRUCTURE OF THE SYSTEM MODEL
The sub-models that make up the overall transport model are:

Flow and Energy Transport Equations for simulation of processes within porous
and permeable media which include:

• Heat conduction only;
• Heat and mass transfer with pressure and temperature dependent properties,

relative permeabilities and capillary pressures;
• Isothermal air-water transport; and
• Heat and mass transfer with noncondensible gas.

Dual Porosity and Double Porosity / Double Permeability Formulation for
problems dominated by fracture flow.

Solute Transport Models, including:

• A reactive transport model that simulates transport of multiple solutes with
chemical reaction; and

• A particle tracking model.

Constitutive Relationships for pressure and temperature dependent fluid/air/gas
properties, relative permeabilities and capillary pressures, stress dependencies,
and reactive and sorbing solutes which encompass:

• Thermodynamic equations;
• Air and Air/Water Vapor Mixtures;
• Equation of State Models;
• Relative Permeability and Capillary Pressure Functions;
• Stress Dependent Properties; and
• Variable Thermal Conductivity.

7.0 GENERAL NUMERICAL PROCEDURE
The numerical solution strategy for FEHM is shown in Figure 1.
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Figure 1. Simplified diagram of code flow in the FEHM application.
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8.0 COMPONENT MODELS

8.1 Flow and Energy Transport
8.1.1 Purpose

The purpose of this model is to simulate heat conduction, heat and mass
transfer for multiphase flow within porous and permeable media, and
noncondensible gas flow within porous and permeable media.

For heat conduction the input to the model consists of an initial description
of the media (rock) properties and state. The output consists of a final
media state.

For heat and mass transfer the input to the model consists of an initial
description of the fluid state as well as media properties. The output
consists of the final fluid and media states.

For noncondensible gas flow, in addition to the initial media properties and
fluid state, the description of the initial state of gas is required. The output
consists of the final state of gas in addition to that described for the
previous components.

8.1.2 Assumptions and Limitations
The major assumptions are those associated with Darcy’s law for fluid flow.
This restricts the velocity of fluid flow to be very slow. The exact
quantification of the values is best addressed in the associated validation
report. Another assumption is thermal equilibrium between fluid and rock
(locally). This is usually an excellent assumption as the thermal wave for
rocks travels on the order of 10-3 m/s, 10-3 m is the upper limit of the pore
size and fluid velocities are of the order of 10-5 m/s.

Other assumptions include an immovable rock phase and negligible viscous
heating. The assumptions associated with flow are discussed in Brownell,
et al. (1975)

8.1.3 Derivation
Because the derivation of the governing equations is analogous for heat
conduction, heat and mass transfer for multiphase flow within porous and
permeable media, noncondensible gas flow within porous and permeable
media, and transport of multiple solutes within porous and permeable
media, only the heat and mass derivation will be presented.

Detailed derivations of the governing equations for two-phase flow
including heat transfer have been presented by several investigators (e.g.,
Mercer and Faust, 1975, and Brownell, et al. 1975), therefore only a brief
development will be presented. The notation used is given in Table I.

Conservation of mass for water is expressed by the equation

, (1)

where the mass per unit volume, Am, is given by

(2)

Am∂
t∂

---------- ∇ f m⋅ qm+ + 0=

Am φ Svρv 1 ηv–( ) Slρl 1 ηl–( )+( )=
Modification date: 7/20/99



FEHM MMS
SC-194

Page 21 of 74
and the mass flux, , is given by

 . (3)

Here φ is the porosity of the matrix, Sis saturation, ρ is density, η is the
concentration of the noncondensible gas and is expressed as a fraction of

the total mass, and  is velocity with the subscripts v and l  indicating
quantities for the vapor phase and the liquid phase, respectively. Source
and sink terms (such as bores, reinjection wells, or groundwater recharge)
are represented by the term qm.

Conservation of fluid-rock energy is expressed by the equation

, (4)

where the energy per unit volume, Ae, is given by

(5)

with ur = cprT, and the energy flux, , is given by

 . (6)

Here the subscript r refers to the rock matrix; ur, uv, and ul are specific

internal energies; cpr is the specific heat; hv and hl are specific enthalpies; K
is an effective thermal conductivity; T is the temperature; and qe is the
energy contributed from sources and sinks.

To complete the governing equations it is assumed that Darcy’s Law
applies to the movement of each phase:

(7)

and

 . (8)

Here k is the permeability, Rv and Rl are the relative permeabilities, µv
and µl are viscosities, Pv and Pl the phase pressures, and g represents the
acceleration due to gravity (the phase pressures are related by

, where  is the capillary pressure). For simplicity, the

f m

f m 1 ηv–( )ρvvv 1 ηl–( )ρl vl+=

v

Ae∂
t∂

--------- ∇ f e⋅ qe+ + 0=

Ae 1 φ–( )ρrur φ Svρvuv Slρlul+( )+=

f e

f e ρvhvvv ρlhlvl K∇T–+=

vv

kRv

µv
--------- ∇Pv ρvg–( )–=

vl

kRl

µl
-------- ∇Pl ρlg–( )–=

Pv Pl Pcap+= Pcap
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equations are shown for an isotropic medium, though this restriction does
not exist in the computer code.

Using Darcy’s Law the basic conservation Equations (1) through (4) can be
combined

(9)

and

(10)

where z is oriented in the direction of gravity. Here the transmissibilities
are given by

, (11)

and

,  . (12)

The source and sink terms in Equations (1) and (4) arise from bores, and if
the total mass withdrawal, qm, for each bore is specified, then the energy

withdrawal, qe, is determined as follows:

(13)

where

, (14)

and

 . (15)

The form of Equation (15) shows how important the relative permeability
ratio Rl /Rv is in controlling the discharge composition. Other source/sink
terms arise from implementation of boundary conditions. These include
specified pressure and temperatures and are discussed in Section 8.1.6,
“Derivation of Numerical Model” subsection “Boundary Conditions”. The

∇– 1 ηv–( )Dmv∇Pv( )⋅ ∇ 1 ηl–( )Dml∇Pl( )⋅ qm+ +–

z∂
∂

g 1 ηv–( )Dmvρv 1 ηl–( )Dmlρl+( )
Am∂
t∂

----------+ 0=

∇– Dev∇Pv( )⋅ ∇ Del∇Pl( ) ∇ K∇T( ) qe+ +⋅–⋅–

z∂
∂

g Devρv Delρl+( )
Ae∂
t∂

---------+ 0=

Dmv

kRvρv

µv
--------------= Dml

kRlρl

µl
-------------=

Dev hvDmv= Del hlDml=

qe qvhv qlhl+=

qv νqm= ql 1 ν–( )qm=

ν 1

1
ρlRlµv

ρvRvµl
-----------------+

--------------------------=
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relative permeability and capillary pressure functions are summarized in
Section 8.4, “Constitutive Relationships”.

The final form of the pure heat conduction equation is easily obtained from
Equation (10) when all convective terms are eliminated:

 . (16)

The mass flux, , source (or sink) strength, qη, and accumulation term,

Aη, are defined as follows for the noncondensible gas conservation
equation:

 , (17)

 , (18)

 . (19)

The noncondensible gas conservation equation is

 . (20)

Here η is the concentration of the noncondensible gas and is expressed as a
fraction of the total mass. As with the water balance equations, source/sink
terms are used to implement boundary conditions. The reader is referred to
Section 8.1.6, “Derivation of Numerical Model” subsection “Boundary
Conditions” for details.

The air water diffusivity (Pruess, 1991) is given by

(21)

where τ is the tortuosity factor and  is the value of Dva at standard

conditions. Within FEHM the value of Dva is set to 2.4*10-5 m2/s, θ is set to

2.334, and the tortuosity factor is an input parameter.

The Equations (9), (10), (16), and (20) represent the model equations for
fluid and energy transport in the computer code FEHM. It should be noted
that Equation (9) also represents pure water with η set to 0.

For situations in which heat effects are minimal, the model can be
simplified. The isothermal air-water two phase system in FEHM is
represented somewhat differently than the nonisothermal system defined
above. Here the liquid phase is pure water and the vapor phase is pure air.

∇– K∇T( ) qe

Ae∂
t∂

---------+ +⋅ 0=

f η

f η ηvρvvv ηlρl vl+=

qη ηvqv ηlql+=

Aη φ ηvSvρv ηlSlρl+( )=

∇– ηvDmv∇Pv( ) ∇ ηlDml∇Pl( )⋅ ∇ Dva∇ηv( )⋅ q+ η– +–⋅

z∂
∂

g ηvDmvρv ηlDmlρl+( )
Aη∂
t∂

---------+ 0=

Dva τφSvDva
0 ρv

0.101325
P

---------------------- T 273.15+
273.15

--------------------------
θ

=

Dva
0
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The component mass balance equations are then also phase balance
equations:

 , (22)

 . (23)

where Equation (22) is the water balance equation and Equation (23) refers

to the conservation of air. Here the subscript  refers to the liquid water

properties and refers to air properties. One option in the model is to solve
Equations (22) and (23) as a full two-phase flow problem. A further
simplification can be made in which the air pressure is assumed to be
constant. This leads to an equation which is similar to the Richard's
equation for unsaturated flow. The method reduces to using only
Equation (22). The method is described further in Section 8.1.6 subsection
“Reduced Degree of Freedom Algorithms”.

8.1.4 Applications
The component model described above may be used to model the flow of air,
water, water vapor, and heat in a porous medium. The validity of the model
is dependent on the validity of the equations described in Section 8.1.3. The
flow of both air and water must be sufficiently small at all possible flow
rates so that the above described equations will be valid. This is believed to
be the case at Yucca Mountain. Of more concern is the accuracy of the
required input and the numerical precision to which these equations are
solved.

For the flow equations, the saturated permeabilities, porosities, and
fracture permeabilities and volumes of hydrogeologic units are required. In
addition, the relative permeability and capillary pressure functions are
also required. Historically this information has been difficult to obtain. It
is important to note that the capillary pressure at low liquid saturations is
very important to the validity of the calculations but is not available in
regions near the residual saturations.

The issue of numerical accuracy is extremely important to the usefulness of
the results. The accuracy may be evaluated by solving the same problem
using different size grids and evaluating the change in the solution.

8.1.5 Numerical Method Type
The primary numerical method used in FEHM is the Finite Element
Method. The reader is referred to Zienkiewicz (1977) for an excellent
account of the method. The summary of the numerics in FEHM given in
Section 8.1.6 assumes a basic knowledge of the numerical solution of
Partial Differential Equations. In addition a working knowledge of the
Finite Element method is helpful.

8.1.6 Derivation of Numerical Model
Discretization: The time derivatives in Equations (9), (10), (16), (20), and
(76) are discretized using the standard first order method (Hinton and
Owen, 1979) given by

t∂
∂ φρlSl( ) ∇ Dml∇Pl( ) qml

∂
z∂

-----g Dmlρl( )+ +⋅– 0=

t∂
∂ φρvSv( ) ∇ Dmv∇Pv( ) qmv

∂
z∂

-----g Dmvρv( )+ +⋅– 0=

l

v
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(24)

where  is the desired function at time ,  is the known

value of f at time ,  is the time step,  is the derivative of f with

respect to time and w is a weighting factor. For , the scheme is fully

implicit (backward Euler) and for , the scheme is fully explicit
(forward Euler).

The space derivatives in the governing equations are discretized using the
finite element formulation. The finite element equations are generated
using the Galerkin formulation. For a detailed presentation of the finite
element method the reader is referred to Zienkiewicz (1977). In this

method the flow domain, , is assumed to be divided into finite elements;
and variables P, T, and η, along with the accumulation terms Am, Ae, and

Aη are interpolated in each element: , ,

, , , , and

 where  is the shape function.

These approximations are introduced in Equations (9), (10), (16), and (20),
and the Galerkin formulation (described by Zienkiewicz and Parekh, 1973)
is applied. The following equations are derived:

, (25)

(26)

and

(27)

where

 , (28)

f t
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 , (29)

 , (30)

 , (31)

 , (32)

 , (33)

 , (34)

and

 . (35)

In the above equations , and the  terms indicate an

upstream-weighted transmissibility (Dalen, 1979). This technique has
worked well in the low-order elements (3-node triangle, 4-node
quadrilateral), where the schemes resemble difference techniques. The
upstream weighting is determined by evaluating the internode flux for the
nodes i  and j . The shape function coefficients are generated in a unique
way that requires the integrations in Equations (33), (34), and (35) to be
performed only once and the nonlinear coefficients to be separated from
this integration. The reader is referred to Zyvoloski (1983) for more details.

The integration schemes available in FEHM are Gauss integration and a
node point scheme used by Young (1981). His implementation differs from
common methods in that it uses Lobatto instead of Gauss integration. The
net effect is that, while retaining the same order of integration accuracy (at
least for linear and quadratic elements), there are considerably fewer
nonzero terms in the resulting matrix equations. Figure 2 shows a
comparison of the nodal connections for Lobatto and Gauss integration
methods. It should be noted that these results hold on an orthogonal grid
only. If a nonorthogonal grid were introduced, then additional nonzero
terms would appear in the Lobatto quadrature method. Note also that the
linear elements yield the standard 5- or 7-point difference scheme. The
reader is referred to Young’s paper for more details.
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In addition to the Finite Element integration techniques described above,
the code has provisions for Finite Volume calculation of the internode flow
terms described by Equations (28) - (35). In the Finite Volume approach,
the geometric terms are calculated as area projections and distances
between nodes. The geometric part of Equations (28), (29), and (30) are
given by the area between the nodes divided by the distance. The area is
partitioned according to the perpendicular bisectors of the midpoints of the
sides of the elements. This is shown in Fig. 3 for triangles in two
dimensions. An analogous approach is used in three dimensions for
tetrahedrals. Quadrilaterals in two dimensions and hexahedrals in three
dimensions are first decomposed into triangles and tetrahedrals,
respectively, and the geometry coefficients formed as described above. For
more details the reader is referred to Fung, et al. (1994).

It is important to note here that with upwinding, the geometric factors that
govern internode flow, regardless of whether calculated from a Finite
Element or Finite Volume approach, must not change in sign. This requires
a Delaunay grid plus the constraint that any elements at interfaces or
exterior boundaries have interior angles less than π/2 radians. The reader
is again referred to Fung, et al. (1994) for more details.

The development of the numerical approximation of the transport equation
is similar to that for the flow equations. Following the discussion above,
the species concentration, C, and the species accumulation term, Ac, are

interpolated in each element: ,  .

Using these approximations and a Galerkin approach, the following
equation is obtained

(36)

Figure 2. Comparison of nodal connections for conventional
and Lobatto  integrations for an orthogonal grid.

(•)
( )
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where

 , (37)

 , (38)

 , (39)

and  is an upstream weighted concentration transmissibility. This

approach is similar to the finite difference method for solving the transport
equations.

Boundary Conditions: Two types of fluid (mass) sources and sinks are
implemented: a specified-flow-rate source/sink and a specified-pressure
condition at a source/sink. No-flow or impermeable boundary conditions are
automatically satisfied by the finite element mesh. The constant pressure
boundary condition is implemented using a pressure dependent flow term

(40)

where Pi is the pressure at the source node i , Pflow,i is the specified flowing
pressure, Im,i is the impedance, and qm,i is the mass flow rate. By
specifying a large I  the pressure can be forced to be equal to Pflow. The
energy (temperature) specified at a source/sink or flowing pressure node
refers only to the incoming fluid value, if fluid flows out, stability dictates
that the energy of the in-place fluid be used in calculations.

Figure 3. Area projections and internode distances used in
Finite Volume calculations on a Delaunay grid.
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In addition to the mass flow source/sink, heat flow sources can also be
provided. A specified heat flow can be input or a specified temperature
obtained

(41)

where Ti is the temperature at the source node i , Tflow,i is the specified
flowing temperature, Ie,i is the impedance to heat flow (thermal
resistance), and qe,i is the heat flow. This heat flow is superimposed on any
existing heat flow from other boundary conditions or source terms.
Specified saturations, relative humidities, air mass fractions as well as
specified air flows are allowed. These use source/sinks to achieve the
desired variable values in a way analogous to that described for pressure
boundary conditions.

In FEHM there is also a provision for creating large volume reservoirs
which effectively hold variables at their initial values. The nodes are
labeled on input and the volumes replaced after the calculation of the
geometric coefficients with a reservoir volume of 1013 m3.

Solution Method: The application of the discretization methods to the
governing partial differential equations yields a system of nonlinear
algebraic equations. To solve these equations, the Newton-Raphson
iterative procedure is used. This is an iterative procedure that makes use
of the derivative information to obtain an updated solution from an initial
guess. Let the set equations to be solved be given by

(42)

where is the vector of unknown values of the variables that satisfy the
above equation. The procedure is started by making an initial guess at the

solution, say . This is usually taken as the solution from the previous

time step. Denoting the value of  at the kth iteration by , the
updating procedure is given by

 . (43)

At each step, the residuals  are compared with a
prescribed error tolerance. The prescribed error tolerance, ε, is an input

parameter and an l2 norm is used:

 . (44)

Convergence is achieved when

 . (45)
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ε is usually in the range 10-4 - 10-7. Semiautomatic timestep control is
designed based on the convergence of the Newton iterations. If the code is

unable to find a solution such that the residuals become less than the
tolerance within a given number of iterations, the time step is reduced and
the procedure repeated. On the other hand, if convergence is rapid, the
timestep is increased by multiplying with a user supplied factor, thus
allowing for large timesteps when possible.

The linear equation set to be solved at each Newton-Raphson iteration of
Equation (43) is

(46)

where  is the Jacobian matrix,  is the change in the

solution vector , and  is the residual. It is

solved with a reuse component, GZSOLVE (see Zyvoloski and Robinson,
1995), that provides a robust solution method for sparse systems of
equations. Further details of the solution procedure can be found in the
GZSOLVE MMS.

Reduced Degree of Freedom Algorithms: In the coupled physical
processes that describe flow in porous media, often one process is
dominant. In heat and fluid flow, for example, the pressure changes more
rapidly than the temperature. This fact may be used to simplify the linear
equations solved at each step of a Newton-Raphson iteration and was
recognized by Zyvoloski, et al. (1979). Solving the pure water heat and
mass flow leads to the following set of linear equations at each Newton-
Raphson iteration:

(47)

The subscripts  and  refer to the mass and energy balance equations

respectively. The subscripts  and  refer to derivatives with respect to
pressure and temperature respectively. The superscripts indicating
iteration number have been dropped for convenience. From Equations (9)
and (10) it can be seen that the primary contribution of temperature is to
affect the thermal conduction terms and the density and viscosities.
Pressure, however, affects the density and is directly involved in the Darcy
velocities. In other words, the pressure more directly affects the global
transport of heat and mass. Guided by this reasoning, a computationally
efficient scheme is obtained by neglecting the off-diagonal derivatives with
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respect to temperature. With this modification the temperature change
may be solved for using

(48)

This may in turn be substituted in the mass balance portion of Equation
(47) giving

 . (49)

The indicated matrix inversions and multiplications are performed with
diagonal matrices and the resulting matrix for the calculation of the
pressure correction is a banded matrix of exactly the same structure as

. It was found that additional efficiency could be achieved by taking

several passes of SOR iterations after the system in Equations (48) and
(49) were solved (Bullivant and Zyvoloski,1990).

The same process can be used to reduce the air/water/heat coupled system
to a one or two degree of freedom problem. Here the coupled 3n by 3n
system may be written as

(50)

Here the subscript refers to the conservation of air mass and derivatives
with respect to the air variable. The air variable is eliminated in favor of
the pressure and temperature using

 . (51)

Substituting this in the mass and energy correction equations:

 . (52)
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During the simulation, the phase state of the system can change. This
makes it necessary to rearrange Equations (51) and (52). The method
remains the same. The reduced Equations (51) and (52) are useful in
thermal simulations where phase changes or other factors reduce the
timestep. The 3n by 3n system may further be reduced to an n by n system.
This is discussed in Bullivant and Zyvoloski (1990). Bullivant and
Zyvoloski also showed that the operations given above can conveniently be
done during the equation normalization process.

The last reduced degree of freedom algorithm to be described reduces the
isothermal air-water problem to a one variable system. The result is
similar to the Richard’s solution. To obtain a computationally efficient
scheme, the air pressure is constrained to atmospheric pressure in the two-
phase region and the liquid saturation is constrained to 1.0 in the one-
phase liquid region. The method involves switching variables and
associated derivatives in the solution of the linear system that produces
the Newton-Raphson correction. The matrix equation that describes the
Jacobian matrices for an isothermal system is given by

 . (53)

Here the subscript  refers to the water conservation equation and the

subscripts  and  refer to derivatives with respect to pressure and
saturation, respectively. Though Equation (53) has the appearance of being
under constrained, for every matrix position there is only one non-zero

entry in the two matrices  and . This is a consequence of the

variable switching just discussed. The algorithm consists of replacing

terms in  with terms from  if two-phase conditions exist at a

node. The resulting system is

(54)

where  represents pressure or saturation depending on the nodal phase
state.

8.1.7 Location
The implementation sequence for the Flow and Energy Transport
Equations may be seen in Fig. 1. The box ‘Form Equations, Solve Jacobian
System’ indicates the position in the algorithm of the components of the
Flow equations in the overall structure of FEHM.

8.1.8 Numerical Stability and Accuracy
The equations which are solved are highly nonlinear and coupled. The
stability of the system has been maximized by solving the fully coupled and
fully implicit formulation of the problem. Because of the nonlinearity,
however, stability cannot be guaranteed. Logic has been incorporated to
restart a timestep if the code realizes it is calculating in an area where the
equation of state (as implemented by FEHM) is not valid

Accuracy of the simulations is also clouded by the nonlinearity issue.
Formally the spatial differencing is second order accurate and the time
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terms are first order accurate. There is a provision (which is usually
invoked) which upwinds the transmissibility terms. This reduces the
spatial accuracy to first order. It is difficult in practice to estimate the
quality of a simulation from these theoretical considerations. The user is
advised to run a given problem with several grid sizes and time step sizes
to assess the quality of a particular solution obtained with FEHM. The
accuracy of the calculations is also addressed in the FEHM verification
report (Zyvoloski and Dash, 1991).

8.1.9 Alternatives
The primary alternative to the formulation given here is an integrated
finite difference formulation. The reader is referred to Nitao (1988) and
Pruess (1991) for details. The basic difference in theory is that FEHM uses
a node centered approach whereas the integrated finite difference
formulation uses a cell centered approach. Classical finite differences may
also be used to solve the equations presented herein but lack the geometric
flexibility of the methods mentioned.

8.2 Dual Porosity and Double Porosity / Double Permeability
Formulation
8.2.1 Purpose

Many problems are dominated by fracture flow. In these cases the fracture
permeability controls the pressure communication in the reservoir even
though local storage around the fracture may be dominated by the porous
rock which communicates only with the closest fractures. This phenomena
requires a model in which the fractures dominate the global pressure
response of the reservoir. The fractures are needed merely as storage.
Moench (1984) has studied several wells in the saturated zone beneath
Yucca Mountain and found that results could be understood if dual porosity
methods were used. The numerical model in which the matrix material is
constrained to communicate only in the neighboring fractures is known as
the Dual Porosity method.

In a partially saturated porous medium, flow is often dominated by
capillary suction. In a medium comprised of fractures and matrix, the
matrix material has the highest capillary suction and under relatively
static conditions the moisture resides in the matrix material. Infiltration
events, such as severe rainfall, can saturate the porous medium allowing
rapid flow in the fractures. To capture this flow phenomena, a system of
equations allowing communication between the fractures and matrix blocks
in the reservoir in addition to the flow within the fractures and matrix
blocks is necessary. This method is known as the Double Porosity / Double
Permeability method.

The decision about which fracture model to use is often affected by the
transient nature of the simulation. It is possible to obtain nearly the same
results for a double permeability simulation using a less expensive
equivalent continuum approach for a steady state solution but different
results would be obtained for a transient solution.

For transport, the alternative fracture formulations are even more
important. Here the simulations are almost always transient. The matrix
and fractures are in approximate pressure equilibrium and there is little
flow from matrix to fracture. The tracer in this scenario is constrained to
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stay in the fracture if it started there. This often produces erroneous
results that can be improved if diffusion from matrix to fracture is
included. The fracture formulations in FEHM account for matrix to
fracture diffusion.

8.2.2 Assumptions and Limitations
In the Dual Porosity method, the computational volume consists of a
fracture which communicates with fractures in other computational cells,
and matrix material which only communicates with the fracture in its own
computational cell. This behavior of the matrix material is both a physical
limitation and a computational tool. The physical limitation results from
the model’s inability to allow the matrix materials in different cells to
communicate directly. This yields only minor errors in saturated zone
calculations, but could pose larger errors in the unsaturated zone where
capillary pressures would force significant flow to occur in the matrix
material. The computational advantages will be addressed in Section 8.2.3.

The Double Porosity / Double Permeability method differs from the Dual
Porosity method in that the matrix can communicate with other matrix
nodes. This produces a more realistic simulation but is computationally
more expensive.

8.2.3 Derivation
Figure 4 depicts the double porosity / double permeability and dual
porosity concepts. Two parameters characterize a double porosity / double
permeability reservoir. The first is the volume fraction, Vf, of the fractures
in the computational cell. For the single matrix node system shown in
Fig. 4 this fraction is a/b. The second parameter is related to the fracture’s
ability to communicate with the local matrix material. In the literature
this parameter takes a variety of forms. The simplest is a length scale, Lf.
This quantifies the average distance the matrix material is from the

Figure 4. Computational volume elements showing dual porosity and double
porosity / double permeability parameters.
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b b
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fracture. With just one node in the matrix material the transient behavior
in the matrix material cannot be modeled. To improve this situation, two
nodes are used in FEHM to represent the matrix material for a dual
porosity reservoir. Conceptually, this is the same formulation as just
described with the addition of a second fracture volume (it is assumed the
length scale of each matrix volume is proportional to the volume fraction).
This is the two matrix node system shown in Fig. 4. More matrix nodes
could be added, but data is rarely good enough to justify the use of even two
matrix nodes. The simple slab model depicted in Fig. 4 is just one of several
different geometric arrangements. Moench (1984) and Warren and Root
(1963) list other reservoir types. All of them are similar in the assumption
of a local one dimensional connection of the matrix to the fracture.

A volume fraction and length scale are used to characterize the system.
Equations (9), (10), (20), and (76) are formulated for both the fracture and
matrix computational grids. One dimensional versions are created to
locally couple the two sets of equations. The length scales are used to
modify spatial difference terms and the volume fractions are used to modify
the accumulation terms.

The volume fractions for the double porosity / double permeability
formulation satisfy the following relationship

(55)

where Vf is the volume fraction of fractures and Vf1 is the fraction of the
matrix volume. The length scales are partitioned for the fracture and
matrix volumes using

(56)

where Lf is the length scale for the fracture volume, Lf1 is the length scale
of the matrix volume, and Lf0 is a characteristic length scale.

The volume fractions for the dual porosity formulation satisfy the following
relationship

(57)

where Vf is the volume fraction of fractures, Vf1 is the fraction of the first

matrix volume, and Vf2 is the fraction of the second matrix volume. Recall
that two nodes are used to model the porous rock (matrix) and the matrix
material communicates only with the local fractures. The length scales are
given by

(58)

V f V f 1+ 1=

L f L f 0V f=

L f 1 L f 0V f 1=
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L f L f 0V f=
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where Lf is the length scale for the fracture volume, Lf1 is the length scale

of the first matrix volume, Lf2 is the length scale of the second matrix

volume, and Lf0 is a characteristic length scale.

8.2.4 Application
The fracture models are extremely useful in investigating flow and
transport in the geologic repository because of the importance of fracture
flow and transport. Large differences are expected between transport
calculations from lumped (matrix and fracture) properties models and
models that include fracture flow and transport. FEHM through a realistic
description of fractures, allows the use of more realistic radionuclide dose
calculations in the performance assessment calculations.

8.2.5 Numerical Method Type
Only algebraic manipulations are used in the derivations described in
Section 8.2.6.

8.2.6 Derivation of Numerical Model
8.2.6.1 Dual porosity
Computationally, the volume fractions and length scales are used to create
one dimensional versions of Equations (9), (10), (20), and (76). The length
scale is used to modify spatial difference terms and the volume factors are

used to modify the accumulation terms [the  matrix in Equations (25)
and (26)].

The geometric factor representing the spatial differencing of the one
dimensional equation for flow between the fracture and the first matrix
node [analogous to the geometric part of Equations (28) and (29)] is given
by

(59)

where VT is the total volume of the computational cell.

The analogous term for the flow from the first matrix volume to the second
matrix volume is given by

(60)

Using these geometric factors Equations (25), (26), and (27) are modified
with the addition of the following flux terms

 , (61)
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 , (62)

and

(63)

where m refers to the matrix and f to the fracture. The equation for the
matrix consists of these transfer terms plus the accumulation terms
analogous to those for the fracture and shown in Equations (2), (5), (19),
and (24). It should also be noted that the gravity terms are not shown in
the transfer terms above for simplicity but are represented in an analogous
way.

The one dimensional nature of the equations provides a computationally
efficient method to solve the algebraic equations arising from the dual
porosity simulation. Equation (64) shows the matrix equation arising from
a dual porosity simulation.

(64)

Here the subscript 0 refers to the fracture, 1 refers to the first matrix

volume, and 2 refers to the second matrix volume. The  represents the
unknown variable or variable pair. The one dimensional character of the
matrix diffusion means that the second matrix node can only depend on the

first matrix node. Therefore, the submatrix is empty. The fact that

matrix nodes cannot communicate with matrix nodes in other

computational cells means that the submatrices and  are

diagonal, therefore

(65)

where the inversion is trivial because  is diagonal. Substituting this

expression into the equation for the first matrix node gives

(66)

Rearranging,
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or

(67)

where

(68)

and

 . (69)

The inversion and multiplications are trivial because of the diagonal
nature of the matrices involved. Equation (67) may next be substituted into

the equation for the fracture variables. Noting that  is empty (the

fracture can only communicate with the first matrix volume) gives

 . (70)

Rearranging terms results in

.(71)

Equation (71) consists of an augmented fracture matrix of the same form as

the original fracture matrix . The operations carried out only add a

few percent to the solution time required to solve a single porosity system.
After the solution of Equation (71) is obtained with the methods described
in the GZSOLVE MMS, the solution in the fracture volume can be obtained
by using Equations (65) and (67).

8.2.6.2 Double Porosity / Double Permeability
The Double Porosity / Double Permeability method is analogous to the Dual
Porosity method described above with the exception that there is only one
matrix node represented in the Double Porosity / Double Permeability
method. The matrix node, however, can communicate globally to other
matrix nodes. This leads to a system of equations of the form

(72)
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In this system of linear equations, the submatrices A00 and A11 are sparse

and A01 and A10 are diagonal. Currently this system of linear equations is
solved directly, but research to improve the efficiency of solution is
ongoing.

8.2.7 Location
When enabled the fracture models are called during the equation
generation and solution phases of the simulation. This is the same place as
shown for the Flow and Transport models in Fig. 1.

8.2.8 Numerical Stability and Accuracy
The same considerations that were discussed in Section 8.1.8 for the Flow
and Transport models are valid here.

8.2.9 Alternatives
Other approaches to modeling fractures include the equivalent continuum
approach, in which the fracture and matrix properties are averaged, and
the discrete fracture approach, in which the fractures are modeled as
individual computational cells. Both of these methods are included in the
model described in Section 8.1, “Flow and Energy Transport”.

There has also been some effort to use a combination of numerical and
analytic techniques. In this approach the matrix flow is represented with a
one dimensional analytic expression. Because of the nonlinear nature of
the solution, this approach has not been pursued.

8.3 Solute Transport - Reactive Transport and Particle Tracking
Models
8.3.1 Purpose

The purpose of the reactive transport and particle tracking models are to
simulate the movement of tracer solutes traveling in either the liquid or
gas phases. A variety of reactive transport capabilities are present in the
models. To perform a reactive transport simulation, an initial description
of each solute concentration in each phase, transport properties of the fluid
and medium, and a specification of the adsorption model and parameters
and any reaction models are required. The output consists of the final
concentration of each solute in each phase.

8.3.2 Assumptions and Limitations
Solutes are assumed to be present in trace quantities, such that their
presence does not impact the fluid properties or the computed flow fields. A
related assumption is that chemical reactions do not enter into the energy
balance through endothermic or exothermic reaction terms. If reactions
take place between the fluid and solid phases (dissolution and
precipitation), the transfer of mass is assumed to have no impact on the
hydrologic properties of the medium.

Many other specific assumptions are built into the solute transport models
related to the nature of the transport and chemical reaction behavior.
These assumptions are treated in Section 8.3.3.
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8.3.3 Derivation
8.3.3.1 Reactive Transport Model

The solute transport equations in the reactive transport model
are not directly coupled to the heat and mass transfer system,
but use the flow rates and temperatures obtained by the heat

and mass transfer solution. The mass flux, , source (or sink)

strength, qc, and accumulation term, Ac, are defined as follows
for a solute:

 , (73)

 , (74)

 . (75)

The transport equation for a solute is given by

 . (76)

Here C is the concentration of the solute. The term

is the dispersion term and  is an equilibrium sorption

term (see section below for the formulation for sorbing solutes).
Cr represents the adsorption of the solute onto the porous

media. In addition, the term  includes the source or sink due

to chemical reaction. The chemical reaction terms are discussed
in more detail below in the section titled “Chemical Reaction
Module.”

Equation (76) is a general equation for a solute present in either
the liquid or gas phases, or one that partitions between the
liquid and gas. The model is capable of simulating any of these
possibilities, as well as a solid species, for which only the
accumulation and chemical reaction terms are present. Several
solutes can be simulated simultaneously, and can interact with
one another through the chemical reaction model. The transport
terms can be set as a function of position, and there is no
requirement that they be the same for all solutes present in a
phase.

The next four subsections elaborate on various transport,
sorption, and reaction features of the reactive transport model.
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Dispersion Coefficients. The model uses a standard
formulation for the dispersion coefficient, expressed as follows
for the x-direction

 . (77)

The Darcy velocity is computed from the solution of the fluid

flow equation. The dispersivity  and the molecular diffusion

coefficient  are properties of the medium, the fluid (liquid

in the above equation) and the solute. Similar expressions are
written for the y- and z-directions.

Adsorbing Solutes. The general equilibrium model for
adsorption of species onto the reservoir rock is given by Polzer,
et al. (1992):

 . (78)

The parameters α1, α2, and β are given in Table II along with
the commonly used sorption isotherm models that can be
derived from the equation. The parameters Kd, Λ, Cmax, rb, and

r are the corresponding parameters associated with the sorption
models as they are more commonly formulated. For example,

when the linear, equilibrium sorption model is selected, the

parameter is the widely used  parameter cited in sorption

studies.

To solve the solute mass balance equation with equilibrium

sorption,  in Equation (76) is computed using Equation (78)

to determine the mass of solute on the rock for a given fluid-

Table II.  Sorption Isotherm Models

Model Expression α1 α2 β

Linear Kd 0 1

Freundlich Λ 0

Modified
Freundlich

ΛCr,max Λ

Langmuir rb r 1

from Robinson (1993)

Dcl x, DAB α+ dl x, vl x,=
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phase concentration. Thus,  is not actually present as a

separate unknown in the mass balance.

Multiple, Interacting Solutes. Thus far, only the
specification of an individual solute has been discussed. In the
reactive transport model, chemical reactions involving one or
more components can be specified. FEHM uses aqueous,
immobile and vapor components as the primary dependent
variables (PDVs) in the reactive transport equations. A set of
chemical components is defined as the minimum number of
species that uniquely describe the chemical system (Mangold
and Tsang, 1991). In FEHM, the secondary dependent variables
(SDVs) are uncomplexed aqueous component concentrations and
aqueous complex concentrations. We assume that all aqueous
phase speciation reactions are at equilibrium (known as the
local equilibrium assumption), resulting in the following
relationship between PDVs and SDVs:

(79)

where  is the total aqueous concentration of component j ,

is the uncomplexed concentration of component j ,  is the

concentration of complex i ,  is the stoichiometric coefficient

representing the number of moles of component j in complex i ,
is the number of aqueous components and is the number

of aqueous complexes (Yeh and Tripathi, 1989).

Applying the local equilibrium assumption to aqueous phase
speciation reactions greatly reduces the number of PDVs in the
transport equations and is generally accepted to be a valid
assumption (e.g. Steefel and Lasaga, 1994). Given the total
aqueous concentration of each aqueous component, the SDVs
can be calculated using a set of nonlinear algebraic equations
derived from chemical equilibrium theory (e.g. Lichtner, 1996).
In order to obtain the total aqueous concentrations, the reactive
transport equations for aqueous, immobile, and vapor
components must be solved. There are no SDVs for either vapor
and immobile components, since the model as currently
formulated treats only aqueous speciation. Reactions involving
vapor and immobile components are treated with a kinetic
formulation, with kinetic reactions represented as reaction
source-sink terms in the reactive transport equations.

Governing Equations for the PDVs: For convenience, we rewrite
equation (76) into the following form for a total aqueous
component:

CR

Cj cj aij xi
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(80)

where  is the solute mass storage per unit total

volume for aqueous component liquid concentration (units of

concentration are moles/kg fluid); is the advective

mass flux of solute; is the hydrodynamic dispersion tensor;

is the saturation;  is the Darcy velocity vector;  is the

porosity;  is the liquid saturation; and  is the kinetic

reaction source-sink term. To simplify the notation for the
remainder of the reactive transport section, we define the
advection-dispersion operator:

(81)

Equation (81), the reactive advection dispersion equation, can
then be rewritten as:

(82)

The reaction transport equation for a vapor component takes on
a similar form to Equation (83) and is given by

(83)

where  is the solute mass per total volume of component k,

 is the vapor concentration of component k,  is the vapor

Darcy velocity vector and  is the number of vapor

components. The hydrodynamic dispersion tensor is assumed to
reduce to longitudinal and transverse components (e.g.
Lichtner, 1996).

Immobile components are not transported and are therefore
treated using a simple mass balance given by

(84)
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where  is the immobile concentration (mass solute per unit

mass rock matrix) of component m and  is the number of

immobile components.

The reaction rate terms in Equations (82), (83), and (84)
originate from the kinetic reactions in the system and may be
nonlinear functions of the concentrations of the total aqueous
components, uncomplexed aqueous components, aqueous
complexes, immobile components and vapor components. FEHM
is capable of modeling the following kinetic processes: linear
adsorption, nonlinear Langmuir adsorption, ion/surface
exchange, precipitation-dissolution and liquid-vapor
interchange of solute. Equations (82), (83), and (84) result in a

system of  nonlinear coupled partial

differential equations (PDEs) where is the number of spatial

grid points. FEHM's method for solving this system of coupled
PDEs will be discussed in the solution procedure section.

Governing Equations for the SDVs: Given all of the aqueous
component concentrations, the uncomplexed aqueous component
concentrations and aqueous complex concentrations can be
calculated using chemical equilibrium theory. The chemical
equilibrium calculations performed by FEHM are similar to the
techniques used in batch geochemical software such as EQ3/6
(Wolery, 1992). A chemical reaction describing aqueous
speciation can be written in the following general form

(85)

where  is the chemical formula for the aqueous component j,

and  is the chemical formula for the aqueous complex i.

FEHM assumes that all aqueous speciation reactions are at
local equilibrium. The mass action expression for an aqueous
component is given by

(86)

where  is the equilibrium formation constant for complex i

and  is the activity coefficient for aqueous component j. In

FEHM, we neglect ionic strength corrections. Equations (79)
and (86) can be combined to express the total aqueous
concentration of component j as a function of the uncomplexed
component concentrations:
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(87)

Equation (87) results in a set of  nonlinear algebraic

equations to be solved given all of the total aqueous
concentrations.

Kinetic Reactions: Kinetic reactions modeled by FEHM cannot
be described by a single reaction rate expression. Rate
expressions are available to simulate sorption, precipitation/
dissolution, dual Monod biodegradation, and a general
reversible reaction. Additional kinetic rate expressions can be
included by adding subroutines that contain the reaction rate
and the derivative of the reaction rate as a function of free ion,
complex or total component concentrations. Note that the
kinetic rate expressions do not necessarily conserve charge. In
all of the reactive transport systems modeled, we do not attempt
to model the complete set of chemical reactions, but attempt to
model a simplified set of reactions. Since all reactions are not
included, a charge balance on the entire system is not possible.

The sorption models we use in the current study contain the
same parameters that are measured in laboratory and field
experiments for the various applications we have investigated.
For this reason, we have chosen a linear kinetic sorption, and a
kinetic ion-exchange model. The retardation of contaminants
due to adsorption/desorption can be modeled with a linear
kinetic sorption/desorption expression. The rate of adsorption/
desorption of component j is given by:

(88)

where  is the mass transfer coefficient, and  is the

distribution coefficient. As , this expression reduces to

the linear equilibrium isotherm.

Biodegradation is an irreversible process in which bacteria
oxidize an organic substrate to produce energy and biomass. In
addition to biomass, the biodegradation process requires the
presence of an electron acceptor (e.g. oxygen, nitrate, etc.) and
nutrients (e.g. nitrogen and phosphorous). An example of a
simplified biodegradation reaction is given by the following
reaction:

Substrate + Electron Acceptor + Nutrients -> cells + CO2 + H2O

FEHM models the rate of biodegradation of a substrate with a
multiplicative Monod model, which is given by:
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(89)

where [S] is the aqueous concentration of substrate (a.k.a the
electron donor), [A] is the aqueous concentration of the electron
acceptor, and mb is the concentration of the immobile biomass.
The parameter qm is the maximum specific rate of substrate
utilization, which represents the maximum amount of substrate
that can be consumed per unit mass of bacteria per unit time.
The parameters KS and KA are the Monod half-maximum-rate
concentrations for the electron donor and electron acceptor,
respectively. The rate of microbial growth is given by the
synthesis rate (which is proportional to the rate of substrate
degradation) minus a first-order decay rate.

(90)

where Y is the microbial yield coefficient and b is the first-order
microbial decay coefficient. In the above equation, the
assumption is made that the background conditions are
sufficient to sustain a microbial population of a given size;
therefore, the biomass concentration is not allowed to fall below
its initial background concentration (mb,init).

A general reaction describing the precipitation/dissolution of a
mineral p can be written in the following form:

(91)

where  are the aqueous concentrations,  are

stoichiometric coefficients. The equilibrium constant for this
reaction is known as the solubility product. Since the activity of

a pure solid is equal to one, the reaction quotient  is defined
as follows:

(92)

At equilibrium,  is equal to the solubility product. The
surface-controlled rate of precipitation/dissolution of a mineral
is given by:

(93)
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where is the concentration of component j in solution, is

reactive surface area of the mineral,  is the rate constant,

and is the solubility product. With this equation, a mineral

will precipitate when it is supersaturated and dissolve when it
is undersaturated.

Solute Sources and Sinks. Solute sources or sinks are
handled in a manner analogous to the fluid flow sources and
sinks. If there is fluid flow out of the model domain (a fluid
sink), the in-place solute concentration is used in the solute
mass balance. For fluid entering the system, the solute
concentration of the incoming fluid can be specified.
Alternatively, the concentration at a node or nodes can be held
at a fixed concentration. This boundary condition can be either a
source or sink for solute, depending on the gradient in
concentration at locations adjacent to the node at which the
boundary condition is applied.

Occasionally, it is desirable to simulate a situation in which
water exiting the system leaves the solute behind rather than
removing it. For example, if water vapor is removed from the
model due to evaporation, a liquid solute would not be removed,
but rather would remain in the model domain and the
concentration would rise. The code also has an option to
implement this type of boundary condition.

8.3.3.2 Particle Tracking Model
The particle tracking method developed in FEHM views the
fluid flow computational domain as an interconnected network
of fluid storage volumes. The description that follows is
applicable for steady state flow fields; the variations in the
method for treating transient flow systems are discussed later.
The two steps in the particle tracking approach are: 1)
determine the time a particle spends in a given cell, and 2)
determine which cell the particle travels to next. These two
steps are detailed below.

The residence time that a particle spends in a cell is governed
by a transfer function describing the probability of the particle
spending a given length of time in the cell. Thus, this particle
tracking approach is called the “residence time transfer
function” (RTTF) method. For a cumulative probability
distribution function of particle residence times, the residence
time of a particle in a cell is computed by generating a random
number between 0 and 1, and determining the corresponding
residence time. If a large number of particles pass through the
cell, the cumulative residence time distribution (RTD) of
particles in the cell will be reproduced.

From the solution of the flow field in a numerical model, the
mass of fluid in the computational cell, and the mass flow rate
to or from each adjacent cell is obtained. In the simplest case,

Cj As

k+

Ksp
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the residence time of a particle within each finite difference cell

 is given by

(94)

where  is the fluid mass associated with the cell and the

summation term in the denominator refers to the outlet mass
flow rates from the cell to adjacent cells. In the absence of
dispersion or other transport mechanisms, the transfer function
is a Heaviside function that is unity at the fluid residence time

, since for this simple case all particles possess this residence

time. Equilibrium, linear sorption is included by correcting the

residence time by a retardation factor , so that

, where  is given by

 . (95)

In Equation (95), is the equilibrium sorption coefficient,

is the bulk rock density,  is the porosity,  is the saturation

of the phase in which the particle is traveling, and  is the

density of the fluid. Once again, in the absence of other
transport processes, the transfer function is a Heaviside
function.

Before discussing more complex examples of the RTTF method,
the method for determining which cell a particle travels to after
completing its stay at a given cell is outlined. The assumption
that is consistent with the RTTF method is that the probability
of traveling to a neighboring cell is proportional to the mass
flow rate to that cell. Only outflows are included in this
calculation; the probability of traveling to an adjacent node is 0
if flow is from that node to the current node. By generating a
uniform random number from zero to one, the decision of which
node to travel to is straightforward. Thus the particle tracking
algorithm is: 1) compute the residence time of a particle at a cell
using the RTTF method; and 2) send the particle to an adjacent
cell randomly, with the probability of traveling to a given cell
proportional to the mass flow rate to that cell.

The transfer function for transport processes such as dispersion
are described now. Within a computational cell, it is assumed
that one-dimensional, axial dispersion is valid. The transport
equation and boundary conditions for the one-dimensional,
advective-dispersion equation are
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 , (96)

at  and (97)

, for  . (98)

In the equations above,  is the concentration,  is the

injection concentration,  is the superficial flow velocity, and

is the effective dispersion coefficient, given by ,

where  is the dispersivity of the medium. Here it is assumed

that the flow dispersion component of is large compared to

the molecular diffusion coefficient . A nondimensional

version of Equation (96) can be obtained using the following

transformations: , ,

, where  is the distance along the flow

path where the concentration is being measured. Then,
Equation (96) becomes

(99)

where  is the Peclet number. Alternatively,

. The solution to this equation and boundary
conditions is given by Brigham (1974) as

 . (100)

The use of this solution in the RTTF particle tracking method
requires that the transport problem be advection dominated, so
that during the time spent in a computational cell, solute would
not tend to spread a significant distance away from that cell.
Then, the approximate use of a distribution of times within the
cell should be adequate. Quantitatively, the criterion for

applicability is based on the grid Peclet number ,

where is the characteristic length scale of the computational
cell. Note that in contrast to conventional solutions to the
advective-dispersion equations, coarse spatial discretization is
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helpful in satisfying this criterion, as long as the mesh spacing
is small enough to provide an accurate flow solution. Highly
dispersive transport invalidates the assumptions of the RTTF
particle tracking technique. This is not viewed as a severe
limitation of the method, since accurate solutions to the
advective-dispersion equation are easily obtained by
conventional finite difference or finite element techniques for
this case. The niche filled by this new technique is in the
solution of advection-dominated problems involving the
movement of sharp concentration fronts.

For multi-dimensional flow systems, this method for simulating
dispersion can be extended for the case of dispersion coefficient
values aligned with the coordinate axes. For this case, the flow
direction is determined by the vector drawn from the nodal
position of the cell the particle traveled from to the current cell,
and the dispersivity for this flow direction is given by

 . (101)

The RTTF particle tracking technique cannot be formulated
with a longitudinal and transverse dispersion coefficient model,
since the flow rates between cells are defined, rather than the
actual flow velocity at a position. For a dispersion model aligned
to the flow direction, the particle tracking method such as that
of Tompson and Gelhar (1990) or a conventional finite element
or finite difference solution to the advective-dispersion equation
should be used.

Matrix Diffusion. Matrix diffusion has been recognized as an
important transport mechanism for fractured porous media
(Neretnicks, 1980, Robinson, 1994). For many hydrologic flow
systems, fluid flow is dominated by fractures, because of the
orders of magnitude larger permeabilities in the fractures
compared to the surrounding rock matrix. However, even when
the fluid in the matrix is completely stagnant, solute can move
into the matrix via molecular diffusion, resulting in a physical
retardation of solute compared to pure fracture transport. This
effect has recently been demonstrated at the laboratory scale by
Reimus (1995), and at the field scale by Maloszewski and Zuber
(1985).

To develop a transfer function for matrix diffusion, an idealized
representation of the transport system must first be developed.
Figure 5 shows the geometry of the model system used for this
purpose. The geometry and flow system consists of equally
spaced, parallel fractures, each of which transmits equal flow.
Fluid in the rock matrix is stagnant. Transport in the fractures

is governed by Equation (96) with an additional term on the

right hand side, given by

α
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(102)

where  is the matrix porosity and  is the fracture

aperture. Transport between the fracture and matrix is
governed by the one-dimensional diffusion equation:

(103)

where  is the retardation coefficient for the matrix. The

molecular diffusion coefficient is a function of the free diffusion
coefficient of the solute in water and a tortuosity factor to
account for the details of diffusion through the tortuous, fluid

filled pore network. In this model,  is treated as the

fundamental transport parameter, recognizing that it is a
property of both the solute and the medium. Solutions to this
transport problem depend on the nature of the boundary
condition away from the fractures. An analytical solution is
given by Tang, et al. (1981) for the semi-infinite boundary

condition  as . For the case of plug flow (no

dispersion) in the fractures, Starr, et al. (1985) show that the
solution reduces to

Equal flow through each fracture
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Figure 5. Model system used to formulated the residence time
transfer function for matrix diffusion
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 . (104)

The semi-infinite boundary condition between fractures limits
the validity of either of these solutions to situations in which
the characteristic diffusion distance for the transport problem is
small compared to the fracture spacing. However, as long as the
solute has insufficient time to diffuse to the centerline between
fractures, the solutions provided by Tang, et al. (1981) or Starr,
et al. (1985) are valid to represent the transfer function for the
particle tracking technique.

Although in principal the Tang, et al. (1981) solution could be
used for the transfer function, its complex form makes it very
inconvenient for rapidly computing particle residence times.
Instead, a two-step process is used in which the residence time
within the fracture is first computed using the transfer function
for one-dimensional dispersion in Equation (100) without
sorption. Then, the plug-flow equation with matrix diffusion and
sorption (Equation (104)) is used with the value of the fracture
residence time just determined to set the transfer function for
the matrix diffusion component of the model. To use
Equation (104) as a transfer function, a subroutine was
developed to determine the inverse of the error function, that is,

the value of  for a given value of , such that

. The numerical implementation of this method

entails dividing the error function into piecewise continuous

segments from which the value of  is determined by

interpolation. The use of the two-step approach is justified
because of the principle of superposition, which allows the
decoupling of the dispersive process in the fracture from the
diffusive transport in the matrix.

Radioactive decay. Radioactive decay is important to many of
the applications for which this model was developed, namely

nuclear waste repository studies. Natural isotopes such as 36Cl

and 14C also require the simulation of radioactive decay. This
phenomenon can be treated by introducing the decay equation
for an irreversible first order reaction:

(105)

where  is the particle age since entering the system, and

 is the rate constant for radioactive decay, related to the

radioactive decay half-life  by .
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In this model, the concept of a fraction of a particle is used to
incorporate radioactive decay into the calculation. The age of a
particle, or time since entering the system, is used in
Equation (105) to compute the fraction of the particles
remaining at the current time. When concentration values are
computed from the composite behavior of a large number of
particles, this method accurately accounts for radioactive decay.

Particle Sources and Sinks. There are two methods for
introducing particles into the flow system: 1) inject the particles
with the source fluid entering the model domain, or 2) release
the particles at a particular node or set of nodes. The first
method is used to track injected fluid as it passes through the
system. The number of particles entering with the source fluid
at each cell is proportional to the source flow rate at that node.
The method is the particle tracking equivalent to a constant
solute concentration in the source fluid. For method 2, an equal
number of particles are released at each node specified,
regardless of the source flow rate. In either case, the model calls
for the particles to be released over a specified time interval.
The code then computes a starting time for each particle.

For fluid exiting the model domain, the model treats this flow as
another outlet flow from the node. The decision of whether the
particle leaves the system or travels to an adjacent node is then
made on a probabilistic basis, just as though the fluid sink were
another connected node. When a particle leaves the system, its
sojourn through the model domain is completed; this fact is
recorded as part of the statistics of the simulation.

Transient Flow Fields. When RTTF particle tracking method
is implemented for a time varying fluid flow system, the
approach is somewhat more complex but still tractable.
Consider a numerical simulation in which a discrete time step is

taken at time , and a new fluid flow field is computed. In this
model, transient flows are handled by treating the new fluid

flow time  as an intermediate time in the particle tracking

calculation that the simulation must stop at. The fate of all

particles is tracked from time  to time  assuming that the

flow field is constant over this time interval. When the

simulation reaches , the position of the particle is recorded,

along with the fractional time remaining for the particle at the
cell, and the randomly generated y-coordinate of the transfer
function used for that particle in the cell. When the new fluid
flow solution is established, the process continues, but the
remaining residence time for a particle is the time determined
from the new transfer function times the fractional time
remaining in the cell.

Another transient effect that must be considered is that the sum

of the outlet mass flow rates  in Equation (94) does not

t

tnew

t tnew

tnew

ṁout∑
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necessarily equal the sum of the inlet mass flow rates. When
there is net fluid storage in a cell, the particle tracking
algorithm uses the sum of the inlet flow rates in Equation (94),
whereas Equation (94) itself is used when there is net drainage
of fluid.

8.3.4 Applications
For transport calculations using either the reactive transport or particle
tracking models, the validity of the solution depends first on the accuracy
of the flow equations. In addition, the reliability of the transport
parameters is also a factor in the representativeness of any transport
simulation.

For the reactive transport model, the issue of numerical accuracy is
extremely important to the usefulness of the results. The accuracy may be
evaluated by solving the same problem using different size grids and
evaluating the change in the solution. The major source of numerical errors
for transport solutions is anticipated to be the numerical dispersion
resulting from the upwinding of the advection term. Alternatively, the
particle tracking module can be used for advection-dominated problems to
provide a solution that can be compared to the reactive transport results.

The primary applications of the particle tracking model are:

• To generate transport solutions that are able to track sharp fronts in con-
centration without numerical dispersion, thereby allowing results from
the reactive transport model to be evaluated for numerical accuracy;

• To allow fluid pathways to be mapped out visually using particles that
follow the fluid;

• To provide a transport solution for a solute that diffuses into the rock
matrix;

• To compile statistics on the distribution of fluid ages present at a given
location.

Several limitations of the particle tracking model should be noted. The
particle tracking method produces a transport solution that is free of
numerical dispersion when flow is predominantly aligned with the fluid
flow finite element grid. Grid orientation effects may be present when flow
travels diagonally across the grid. The dispersion model extends the
transport solution beyond a simple “plug flow” transport model, but the
RTTF method is only valid for advection-dominated problems. In regions of
a model domain where the grid Peclet number is less than about 1, the
method produces inaccurate results. Finally, the matrix diffusion method
is valid only if the solute has insufficient time to diffuse fully between
fractures during the time scale of a simulation.

8.3.5 Numerical Method Type
For the reactive transport model, the approximation of the partial
differential equations for solute transport parallels exactly the theory
outlined for the solution of the flow and energy transport equations in
Section 8.1.6. The concentrations of all solutes must be solved
simultaneously, since the concentrations are coupled through the kinetic or
equilibrium reaction terms. The code employs an option that we denote as
selective coupling to solve multiple solute concentrations directly using the
multiple degree-of-freedom equation solver. When more than four solutes
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are present, an iterative procedure is required. This method is outlined in
detail in Section 8.3.6.

The RTTF particle tracking method is a Lagrangian numerical method that
employs transfer functions to compute particle residence times in each cell.
Thus the time a particle spends in a cell, as well as the decision of which
adjacent cell to travel to next, are determined probabilistically.

8.3.6 Derivation of Numerical Model
8.3.6.1 Reactive Transport Model

Since many aspects of the reactive transport numerical methods
parallel the development of the fluid and energy transport
numerical method, only the parts of the development that are
unique to solute transport are outlined here. The reactive
transport equations given by Equations (82), (83) and (84) result
in a set of nonlinear coupled PDEs. The numerical
implementation of the transport step can be derived by
rewriting Equations (82), (83) and (84) in fully implicit time-
discretized form:

(106)

(107)

(108)

where n indicates the time step level. Reactive transport codes
in the literature solve equations (106), (107) and (108) using
either the global implicit, operator splitting, or sequential
iterative methods. The global implicit method solves the
transport and reaction step simultaneously. On the other hand,
operator splitting methods solve the transport and reaction
steps in sequence without iteration. Finally, the sequential
iterative approaches iterate between the transport and reaction
steps until a fully implicit solution is achieved. In this paper, we
present a technique which is a hybridized version of the global
implicit and sequential iteration methods.

The reaction rate terms in equations (106), (107) and (108) can
be estimated using a Taylor series expansion to linearize the
reaction rate term
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(109)

where p is the iteration level and i represents either an
aqueous, vapor or immobile component.

The iterative methods in the literature differ in the number of
terms evaluated in this Taylor series expansion. Expanding
each term on the left hand side of equations (106), (107) and
(108) in a Taylor series (neglecting the higher order Taylor
series terms) and substituting the expanded reaction rate given
by Equation (109) results in a set of linear algebraic equations
which constitute a single iteration of the Newton-Raphson
method. This fully coupled approach is called the global implicit
method. However, the Newton-Raphson method results in a
large system of coupled linear equations stemming from the

derivative terms of  with respect to other aqueous, vapor, or

immobile components. The approximate iterative approaches in
the reactive transport literature often drop terms in the Taylor
series expansion to decouple the linear equations into smaller
equations sets that are solved sequentially. The sequential
iterative approach described by Engesgaard and Kipp(1992) and
Kinzelbach et al.(1991) use only the first term in the Taylor

series ( ). We will refer to this method as the SIA-0

method. The SIA-1 method (Tebes-Stevens, et al.(1998))
estimates the reaction term as:

(110)

The SIA-1 approach seeks to improve the estimate of

by considering the relationship between  and  only. That

is, the relationships with other aqueous, vapor and immobile
components are neglected, and the linear equations arising from
the individual components are solved separately. We have found
that the SIA-1 greatly improves convergence for large
Damkohler number systems, when kinetics are fast compared to
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the transport time scale (Tebes-Stevens et al.(1998)). SIA-1

often outperforms SIA-0 because the  term is often

significant, whereas,  terms are not. However,

for certain reactions, the SIA-1 approach becomes quite
inefficient because some of the cross derivative terms

( ) that are neglected by SIA-1 are significant.

Physically, this can occur when aqueous, vapor, or immobile
components that are, in fact, coupled to one another are treated
as though they were independent.

Selective Coupling and Coupled Normalization

Selective Coupling: In an extension of the SIA methods, we
selectively include additional derivative terms that couple a
subset of the components to one another to improve
convergence. We call this method “Selective Coupling” to denote
the flexibility of the implementation. Since cross derivative

terms, , are now included in the calculation, sets of

components must be solved simultaneously. We note in passing

that in the extreme case in which only are calculated,

the method reduces to the SIA-1 method. At the other extreme,
in which all components are coupled, a global implicit solution
scheme16 is effectively obtained. The algorithm is best
illustrated through specific examples. For this, we first consider
the following reaction system of kinetic reactions among
aqueous components:

; (111)

; (112)

; (113)

We start with the fully coupled formulation of the transport
problem. The equation set resulting from the use of Newton's
method to solve the nonlinear system of equations is
represented in block matrix form below:

∂Ri ∂Cj⁄

∂Ri ∂Cj⁄ i j≠,

∂Ri ∂Cj⁄ i j≠,

∂Ri ∂Cj⁄

∂Ri ∂Ci⁄

A B⇔ RA kf 1CA kr1CB–=

B C⇔ RB kf 2CB kr2CC–=

C D⇔ RC kf 3CC kr3CD–=
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(114)

in which each element in the matrix is a submatrix

containing elements of the Jacobian matrix ( ),  is

the vector of change in component concentration at node i

( , , and ), is the number of spatial nodes,

and the are the residual arrays which contain the advection,

dispersion, accumulation, and reaction terms (length of ,

where  is the number of “degrees of freedom,” in this case

equal to four, the number of components in the example). The
elements of the Jacobian matrix contain derivatives of the
residual with respect to concentration. In the diagram, a tri-
diagonal matrix resulting from a one-dimensional transport
problem is shown for simplicity, but is not a restriction of the
method. For our example reactive transport system, the
submatrix a and submatrix t at a node q connected to node q+1
are given by:

 ; (115)

where the a matrix is written at node q, and q+1 represents a
node connected to node q. In general, the structure of submatrix
a is defined by the reaction system. Now suppose that the
reaction in equation (112) is slow compared to the other two
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reactions. In the submatrix a, the terms  and

 would be small compared to the other elements of a,

and a can be approximately represented as:

(116)

This system can then be solved in two steps, with the  and

equations solved simultaneously, followed by the  and
equations solved in a second step. A reactive transport computer
code that employs this method allows the user to “selectively
couple” the components in the transport iteration. The
decomposition of a four-degree-of-freedom problem into two two-
degrees-of-freedom problems results in memory efficiencies and
computational savings per iteration, and therefore is a desirable
alternative to a full global implicit solution for some
applications. Note that when all off-diagonal terms in the
submatrix a are omitted, each of the four components can be
solved iteratively and sequentially, i.e. the SIA-1 method is
obtained.

When more than one component is solved simultaneously, an
equation solver that handle block matrices is required. The
linear equation solver in FEHM, developed primarily for the
solution of coupled fluid flow and heat transport, makes use of
well-tested numerical techniques that take advantage of the
block structure of the coupled equations for pressure,
temperature, and fluid saturation. Here, we use the same solver
technologies for the transport solution step. In essence, for

 (where  unknowns per grid point, the same

operations on the overall matrix of a single-unknown solution
are carried out, but multiplications of individual matrix
elements now become matrix multiplications involving the

 submatrices, and divisions are carried out as

multiplications by the inverse of the submatrix. Since such
operations become memory and cpu intensive for large
problems, it is important to employ efficient numerical
techniques. FEHM uses numerical methods suitable for the
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nonsymmetric matrices that arise from the finite element
solution of reactive transport equations on unstructured
numerical grids. The solver software uses incomplete
factorization with variable fill-in level as a preconditioner, and
a generalized minimum residual (GMRES) acceleration
technique for the iterative solution. Details of this method as
applied to heat and mass transport problems may be found in
Zyvoloski et al.(1997). In a typical reactive transport solution
with FEHM, the heat and mass transfer solution is also being
performed, so the initial bookkeeping associated with the
method is already being carried out, and the memory allocated
for the solution is shared between the heat and mass solution
and the transport solution.

There are definite trade-offs in computational efficiency and
memory utilization between the SIA techniques and methods
involving coupling of the transport equations of individual
components. Coupling requires more time per iteration and
more memory than typical SIA methods. However, components
strongly coupled by reaction may not converge using SIA
methods without using small time steps. Since flexibility is
required in a general purpose code, the transport iteration in
FEHM was developed with the Selective Coupling provision to
solve the component concentrations in groups of one or more at
a time, so that only those components that need to be coupled
are solved simultaneously. It is necessary to solve a set of
equations for each component present in the system, but the
order of solution and the nature of the coupling are set by the
user at run-time. This allows the user, on the basis of his
knowledge of the reactive transport system, to couple only those
components that are required for efficient solution of the system
of equations. Selective Coupling of components linked to each
other through kinetic chemical reactions allows a given problem
to be solved in the fastest, yet most memory efficient manner
possible.

Coupled Normalization: When residual equations are solved
simultaneously, it is advisable to normalize them so that they
are solved to the same degree of numerical precision. We now
present a method we call “Coupled Normalization” for
accomplishing this in a manner that in some cases has the
added benefit of effectively reducing the number of degrees of
freedom of the solution. Again, we will make use of an example
to illustrate the method, in this case a kinetic ion exchange
reaction of the form

(117)

(118)

This example consists of two aqueous components, which in
general can undergo aqueous speciation reactions, though not in
this example, and two immobile components. As in the previous

A B-X+ B A-X+⇔

RA kf A[ ] B-X[ ] kr B[ ] A-X[ ]–=
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example,  is four because we will solve for these four

components simultaneously. Furthermore, the block matrix
equation set in (114) also applies here. The submatrices a and t
are given by:

 ; (119)

The immobile components are not present in the t submatrices
since there are no transport terms associated with them. Before
solving the linear equation set, we apply the Coupled
Normalization step, which consists of multiplying both sides of
the equation set at each node by the inverse of a, which of
course transforms each submatrix a into the identity matrix.
This operation scales the diagonal term of each equation to the
same value (unity), thereby normalizing the equation set to
ensure that when a typical convergence criterion, such as one
based on the L2 norm, is employed, each equation is solved to
the same level of accuracy on a normalized basis. Coupled
normalization serves another important function for systems
with immobile components, as evidenced by the structure of the
transport submatrix t' after multiplication by a-1

(120)

where the  denotes a non-zero term. After coupled
normalization, the mobile component equations no longer
contain terms involving the immobile component unknowns in
either the transformed submatrix a or the t' submatrix. Thus
the first two equations can now be solved as a coupled two by
two equation set for the concentration changes of the mobile
species, after which the immobile component unknowns are
then solved for individually by simple back-substitution.
Coupled normalization in effect folds the cross derivative
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information from the immobile component equations into the
equations for the mobile components, so that only the two
mobile component unknowns need be solved simultaneously.
This method effectively reduces the number of degrees-of-
freedom in the transport solution by the number of immobile
components in the system of equations (two in this example),
thereby reducing the memory utilization and computational
burden of the solution.

8.3.6.2 Particle Tracking Model
All aspects of the numerical model for particle tracking are
discussed in Section 8.3.3.2.

8.3.7 Location
The implementation sequence for either the Reactive Transport Model or
the Particle Tracking Model is illustrated in Fig. 1. The two models cannot
be run simultaneously in the current version of FEHM. After a heat and
mass transfer time step is taken and the flow and temperature fields are
determined, the solute transport solution is computed from the previous
heat and mass time to the current time. The flow field used for the
transport calculations are assumed to be unchanging during this time.

8.3.8 Numerical Stability and Accuracy
Reactive Transport Model. As in the heat and mass transfer solution
discussion (Section 8.1.8), nonlinearities can give rise to problems with
stability of the solution. The formulation of the problem as a fully coupled,
implicit solution maximizes the likelihood of obtaining a stable, accurate
solution. Accuracy is also intimately tied to the grid discretization, time
step, and dispersion coefficients of the solutes. Advection dominated
transport with low dispersion coefficients is well known to be difficult to
simulate accurately with finite difference or finite element techniques.
Testing the solution against the results of a calculation with smaller grid
spacings and time steps is one way to assess the level of numerical
dispersion. Another way is to compare the solution to a particle tracking
simulation, which is designed to minimize numerical inaccuracies.

Particle Tracking Model. The accuracy of a RTTF particle tracking
should be evaluated using the following considerations:

• The dispersion coefficient must be set high enough to avoid grid Peclet
numbers less than 1; in fact, the code sets the Peclet number of a cell to 1
for any value lower than 1.

• Diffusion into the rock matrix must be slow enough that the solute has
insufficient time to diffuse fully to the centerline between fractures.

• If the velocity vectors are not aligned with the finite element grid, some
inaccuracies due to grid orientation effects are to be expected.

• The number of particles in the simulation must be sufficient to minimize
errors induced by statistical fluctuations.

8.3.9 Alternatives
Reactive Transport Model. Many different numerical formulations of
the reactive transport problem are possible. A review of these methods was
performed by Yeh and Tripathi (1989). These models differ in the number
Modification date: 7/20/99



FEHM MMS
SC-194

Page 63 of 74
of species that can be simulated, and the nature of the chemical reactions
that can be simulated. When equilibrium is assumed for all reactions, the
reaction part of the problem can effectively be decoupled from the
transport, and considerable simplification results. For combined kinetic
and equilibrium formulations, Friedly and Rubin (1992) have shown that
similar simplifications are possible. Most models presented in the
literature that use sophisticated chemical sub-models are restricted to
simplified flow geometries and flow physics or require a flow solution as
input, and the number of grid points that can practically be simulated is
small.

The reactive transport model developed here was specifically designed for
use in the context of large-scale two- and three-dimensional simulations. It
was assumed that in the near future, computational resources would be
insufficient to handle a large number of chemical species for a large-scale
problem of many thousands of grid points. Therefore, the model
development assumed that information from other sources (geochemical
codes, literature data for a few key reactions and species) could be
abstracted and distilled into a relatively small number of interacting
solutes. Given this assumption, the logical method of solution was to utilize
the multiple degree-of-freedom solution technology that is at the center of
the FEHM code. Alternative techniques such as those referred to above will
be evaluated and incorporated into future versions of FEHM, as needed.

Particle Tracking Model. The RTTF particle tracking modeling approach
in FEHM differs from most groundwater particle tracking algorithms
reported in the literature [e.g. Tompson and Gelhar (1990), Lu (1994)].
These methods require that the velocity vector be resolved accurately at each
location in the model domain. This usually involves an interpolation method to
obtain the velocity at any position needed based on the values computed from a
flow simulation (at cell faces or nodes, for example). Then, the algorithm
consists of marching forward in small time steps, computing the trajectory and
new location of the particle at the new time. Equilibrium, linear sorption is
modeled by introducing a retardation factor to reduce the particle velocity.
Dispersion is handled using a random walk approach that displaces the particle
a certain amount during each time step, so that the particle samples a different
velocity field than it would have in the absence of dispersion.

By contrast, the approach used in the FEHM particle tracking algorithm
uses the fluid mass fluxes from node to node as the basis for moving
particles. These are the quantities that are actually known in integrated
finite difference and finite element calculations, while the velocity vectors
are interpolated results. Thus the implementation of the RTTF technique
in an existing code like FEHM is straightforward. Another practical
advantage is that the computations are extremely fast: simulations with
several million particles are practical using conventional workstations.
One compromise in the approach is the limitation to advection dominated
transport systems. This was thought to be a reasonable compromise,
especially in the context of a code that already has a reactive transport
module that easily handles systems with high dispersion coefficients.
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8.4 Constitutive Relationships
8.4.1 Purpose

The densities, viscosities, and enthalpies of water, water vapor, and air are
required for the simulation of the Flow and Transport in a porous medium.
These constitutive relations depend on temperature and pressure. To be
computationally efficient, the form of these relations must be easy to
compute and accurate. To satisfy these needs rational polynomial fits to the
National Bureau of Standards Steam Tables are used. The models require
the pressure and temperature of a node as input and output the densities,
viscosities, and enthalpies of the phases.

8.4.2 Assumptions and Limitations
At present, several fits of the data are available to the user. These allow
usage of the relations for temperatures up to 360 °C and pressures up to
110 MPa. If the variable exceeds the limits of the data, the FEHM code will
restart the timestep with a smaller time step size and try to keep the
variable within the bounds of the data.

8.4.3 Derivation
Pressure and Temperature Dependent Fluid Properties. A porous
flow simulator, such as FEHM, with heat and mass transfer capabilities
requires the functional dependence of the phase densities, the phase
enthalpies, and the phase viscosities on temperature (T) and pressure (P).
Because FEHM is an implicit code which uses a Newton-Raphson iteration,
derivatives of the thermodynamic functions with respect to P and T are
also required.

Rational function approximations are used to estimate the thermodynamic
variables in FEHM where the rational functions are a ratio of polynomials.
Complete polynomials of order three are used in both the numerator and
denominator. For example, the density is approximated as

(121)

where

(122)

and

. (123)

This type of relationship has been shown by Zyvoloski and Dash (1991) to
provide an accurate method for determining parameter values over a wide
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range of pressures and temperatures, as well as allowing derivatives with
respect to pressure and temperature to be computed easily.

Polynomial coefficients were obtained by fitting data from the National
Bureau of Standards OSRD database 10, the database used for the NBS/
NRC Steam Tables (Harr, et al. 1984). The data fits result in errors less
than one percent and often less than 0.1 percent. The coefficients used in
FEHM are valid over the pressure and temperature ranges

MPa and °C. Polynomial coefficients for
the enthalpy, density, and viscosity functions are given in Table III of the
Appendix.

Pressure as a function of saturation temperature / Temperature as
a function of saturation pressure. The equation for the saturation line
is important for the determination of the phase state of the liquid vapor
system. The saturation line may be described in a water only system as the
pressure above which boiling occurs. In a mixture of air or other
noncondensible gas, the saturation line is simply the partial pressure of
water or the vapor pressure of water. Rational function approximations are
also used for the saturation line equations:

, (124)

where

(125)

and

. (126)

X represents temperature or pressure in the respective relationships.
Polynomial coefficients for the saturation functions are given in Table IV of
the Appendix.

FEHM also allows for the inclusion of a vapor pressure lowering term
which may be important in situations where high capillary forces are
present. The modified vapor pressure (Case, 1994) is given by:

(127)

where  is the new vapor pressure of water, Pcap is the capillary

pressure, and  is the gas constant divided by the molecular weight of
water.

Properties of Air and Air/Vapor Mixtures. Appropriate thermodynamic
information for air and air/vapor mixtures are provided. The density of air
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is assumed to obey the ideal gas law. Using atmospheric conditions as the
reference state

(128)

where ρa has the units kg/m3, T is in °C, and P is in MPa. The mixture
density is given by

(129)

where ρv,w is the density of water vapor.

The enthalpy of air is specified as a function of temperature only

(130)

where

, (131)

ha is the enthalpy of air (MJ/kg), and cpa is the heat capacity of air (MJ/kg

°C). The parameters in Equation (131) were obtained by regression of a
more complex correlation found in Sychev, et al. (1988). The mixture
enthalpy for the vapor phase is

(132)

where hv,w is the enthalpy of steam and ηv is the fraction by mass of air in
the vapor phase. The mixture enthalpy of the liquid phase is given by:

(133)

where hl, w is the enthalpy of liquid water and ηl is the mass fraction of air
in the liquid phase.

Assuming ideal gas behavior, the mass fraction of air in the vapor phase
may be expressed as

. (134)

The mass fraction of air in the liquid phase is assumed to obey Henry’s law
or

(135)

ρa 1.292864
273.15

T 273.15+
-----------------------------

 
 
  Pa

0.101325
-------------------------

 
 
 

=

ρv ρv w, ρa+=

ha cpa T 10
6–⋅( )=

cpa 1003.7 0.025656T 0.00045457T
2

2.7107 10
7–× T

3
–+ +=

hv hv w, 1 ηv–( ) haηv+=

hl hl w, 1 ηl–( ) haηl+=

ηv

ρa

ρv
-----=

ηl KH a, Pa=
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where  is the Henry’s law constant for air ( = 1.611 x 10-4 Pa-1)

and Pa is the partial pressure of air.

The viscosity of the vapor phase is assumed to be a linear combination of
the air viscosity and the water viscosity

(136)

where µv, w is the steam viscosity and is obtained from steam data. The
viscosity of air is assumed constant

. (137)

The liquid phase viscosity is assumed to be independent of the amount of
dissolved air and is obtained from a rational function approximation like
those specified above.

Relative Permeability and Capillary Pressure Functions. Relative
permeabilities and capillary pressures can be strong functions of
saturation. Several well known relative permeability functions are
available to the user. They are the simple linear functions, the Corey
(1954) relationships, and the van Genuchten (1980) functions. Composite
relative permeability curves, as described by Klavetter and Peters (1986),
are also a user option.

The linear functions are given by

(138)

(139)

where Slr is residual liquid saturation, Svr is residual vapor saturation, Slmax

is maximum liquid saturation, and Svmax is maximum vapor saturation.

The Corey relative permeability functions are given by

, (140)

(141)
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1 Ŝ– l
2

( )=
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where and Slr and Svr are the residual liquid and vapor

saturations respectively.

The van Genuchten relative permeability functions are described by the
following formulae:

(142)

(143)

where  and  , where n is an experimentally

determined parameter.

Rl and Rv are restricted by the requirement that  and

. The relative permeability functions are truncated to the

appropriate value if the these conditions are violated.

The capillary functions considered are the linear function and the van
Genuchten capillary pressure model. Our terminology follows that of
Pruess (1991).

The linear capillary function model is given by the following equations

(144)

where Pcapmaxis the maximum capillary pressure, Slr is the residual liquid

saturation, and Slmax is the maximum liquid saturation. The restriction

Slmax > Slr is also necessary.

The van Genuchten functions (van Genuchten, 1980) for capillary pressure
are described by the following equations

(145)
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where , , , and

 (n and αG are experimentally determined parameters).

The van Genuchten capillary pressure curves approach an infinite value as
Sl approaches 0 and 1. This requires the use of extrapolation techniques. At
low saturations both linear and cubic fits are available. At high saturations
a linear fit is used.

It should be noted that the van Genuchten relative permeability functions
can be formulated in terms of capillary pressure by combining equations
(142) and (145). While this may seem equivalent to the saturation based
equation (142), some differences occur at very high or very low saturations.
As mentioned previously, linear extensions of the capillary pressure and
relative permeability functions are required in these regions. If a capillary
pressure formulation of the relative permeability is used, then no separate
linear extrapolation is needed for the relative permeability model as the
capillary pressure is constrained to realistic values through its own
extrapolation fits at low and high saturations. It should also be noted that
a different relative permeability is sometimes used for the air phase:

(146)

This replaces equation (143) in some models.

Stress Dependent Properties. Often it is necessary to accommodate
changes in the rock porosity and permeability due to changes in effective
stress caused by temperature and pore fluid pressure changes. A linear and
nonlinear model are incorporated in the code for this purpose.

The linear pore pressure model for porosity is given by

(147)

where φ is the porosity at pressure P, φ0 is the porosity at pressure P0,

is the aquifer compressibility.

The nonlinear model of fracture porosity (Gangi, 1978, Appendix) is given
by

(148)

and
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Sl Slr–

Slmax Slr–
-------------------------= P0

1.0
αG
-------=

λ 1 1
n
---–=

Rv
1.0 Ŝ
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(149)

where Pc is the closure stress, σ is the in situ stress (assumed isotropic), α
is the coefficient of thermal expansion of the rock, E is Young’s modulus,
∆T is the temperature change of the rock, and Px and m are parameters in
the model.

For the Gangi Model the effect of stress and temperature changes on
permeability are modeled with

(150)

where k0 is the permeability at porosity φ0.

Variable Thermal Conductivity. The thermal conductivity of the solid is
often more accurately characterized as a function of temperature or liquid
saturation. A linear temperature-dependent model and a relation based
upon the square root of liquid saturation are incorporated in the code for
this reason.

The linear temperature dependent model is given by

(151)

where is the temperature dependent thermal conductiivity, is the

thermal conductivity at the reference temperature , and  is the

slope of the linear relation.

The saturation dependent thermal conductivity model is given by

(152)

where  is the saturation dependent thermal conductivity,  is the

conductivity at 0 saturation, and  is the slope of the linear

relationship. Note that the conductivity at complete saturation is

.

8.4.4 Application
The Constitutive Relationships discussed in Section 8.4 describe
parameters that are used in the models described in previous sections. The
discussion provided in Section 8.1.4 is also applicable here.

8.4.5 Numerical Method Type
The Newton Raphson method is used to calculate saturation and
temperature as a function of pressure. The method has been previously
described in Section 8.1.6.

Pc σ P– αE∆T–=

k k0
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8.4.6 Derivation of Numerical Model
The relative permeability and capillary functions represent the most
nonlinear parts of FEHM and special consideration has been given them. A
procedure similar to that used by Nitao (1988) is used to restrict the van
Genuchten capillary function, Equation (145), to finite values when
approaching zero saturation. The procedure is simple. At a low saturation,
usually input by the user, the van Genuchten functions are replaced with
linear fits that match the van Genuchten function at the specified
saturation value and attain a maximum value, usually twice the value at
the specified saturation, at zero saturation. This new capillary pressure is
then used in the calculation of the relative permeability. The formulation
in FEHM differs from Nitao’s implementation in that it uses a cubic spline
fit to match both the value and the slope at the specified saturation. At zero
saturation the coefficients of the spline are adjusted so a zero slope and a
zero second derivative is achieved. This assures a monatomically
increasing function for the capillary pressure.

8.4.7 Location
The constitutive relationships are used to obtain the parameters that
define the Flow and Energy Transport Equations. Referring to Fig. 1, the
box labeled ‘Get thermodynamic parameters’ represents calls to routines
that form the constitutive relationships.

8.4.8 Numerical Stability and Accuracy
The formulation of the constitutive relationship is directly related to the
overall accuracy of the FEHM application. The accurate formulation of the
water properties described in Section 8.4.3 was motivated by the need to
have accuracy combined with computability. The discussion in
Section 8.4.6 showed the need to have continuous and finite values of the
constitutive functions. The authors believe there is still much work to be
done in the area of extending the range of the functions as well as finding
representations that will allow better convergence of the Newton Raphson
iteration.

8.4.9 Alternatives
FEHM uses analytic derivatives of the constitutive relationships described
in Section 8.4. The TOUGH code described by Pruess (1991) and the
variant of TOUGH used by Nitao (1988) use numerical differences of the
fluid and energy balance equations in the Newton Raphson iteration. Both
of the methods have merit. The numerical derivative approach allows for
possibly faster incorporation of new fluid physics models while the analytic
derivative approach uses fewer iterations on tested problems (Reeves,
1993).

The functional representation of the constitutive models could be replaced
by a tabular formulation. Several available codes have used tabular input
for capillary and relative permeability data. FEHM will also incorporate
tabular representations in future versions.

9.0 EXPERIENCE
The FEHM computer code and its predecessors have been used on a wide variety of
problems ranging from geothermal to environmental remediation to radioactive
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transport. When used in conjunction with its available grid generation package and post
processing tools it has been a successful tool for modeling very complex geological
settings and coupled fluid processes. When benchmarked against other codes it has been
shown to be extremely competitive (Reeves, 1993).
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ns

Viscosity
Vapor

9e-02 -0.13920783e-03

2e-04 0.98434337e-02

2e-07 -0.51504232e-03

8e-09 0.62554603e-04

4e-05 0.27105772e-04

6e-07 0.84981906e-05

0e-10 0.34539757e-07

1e-07 -0.25524682e-03

5e-09 0.00000000e+00

1e-10 0.12316788e-05

0e+01 0.10000000e+01

3e-01 0.10000000e+01

1e-05 -0.10000000e+01

7e-06 -0.10000000e+01

1e-01 0.10000000e+01

8e-03 0.10000000e+01

5e-06 -0.22934622e-03

2e-03 0.10000000e+01

2e-05 0.00000000e+00

0e-05 0.25834551e-01

 MPa 0.001 - 20 MPa

°C 15 - 360°C

10.0
A

P
P

E
N

D
IX
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Table III.  Polynomial Coefficients for Enthalpy, Density and Viscosity Functio

Enthalpy Density
Liquid Vapor Liquid Vapor Liquid

C
oe

ffi
ci

en
ts

 o
f N

um
er

at
or

Y0 0.25623465e-03 0.31290881e+00 0.10000000e+01 0.15089524e-05 0.1740914

Y1 0.10184405e-02 -0.10000000e+01 0.17472599e-01 0.10000000e+01 0.1889488

Y2 0.22554970e-04 0.25748596e-01 -0.20443098e-04 -0.10000000e+01 -0.6643933

Y3 0.34836663e-07 0.38846142e-03 -0.17442012e-06 -0.16676705e-02 -0.2312238

Y4 0.41769866e-02 0.11319298e-01 0.49564109e-02 0.40111210e-07 -0.3153491

Y5 -0.21244879e-04 0.20966376e-04 -0.40757664e-04 0.25625316e-10 0.1112071

Y6 0.25493516e-07 0.74228083e-08 0.50676664e-07 -0.40479650e-12 -0.4857602

Y7 0.89557885e-04 0.19206133e-02 0.50330978e-04 0.43379623e-01 0.2800686

Y8 0.10855046e-06 -0.10372453e-03 0.33914814e-06 0.24991800e-02 0.2322503

Y9 -0.21720560e-06 0.59104245e-07 -0.18383009e-06 -0.94755043e-04 0.4718017

C
oe

ffi
ci

en
ts

 o
f D

en
om
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or

Z0 0.10000000e+01 0.12511319e+00 0.10009476e-02 0.12636224e+00 0.1000000

Z1 0.23513278e-01 -0.36061317e+00 0.16812589e-04 -0.30463489e+00 0.1052315

Z2 0.48716386e-04 0.58668929e-02 -0.24582622e-07 0.27981880e-02 -0.2265839

Z3 -0.19935046e-08 0.99059715e-04 -0.17014984e-09 0.51132337e-05 -0.3179660

Z4 -0.50770309e-02 0.44331611e-02 0.48841156e-05 0.59318010e-02 0.2986914

Z5 0.57780287e-05 0.50902084e-05 -0.32967985e-07 0.80972509e-05 0.2184424

Z6 0.90972916e-09 -0.10812602e-08 0.28619380e-10 -0.43798358e-07 -0.8765885

Z7 -0.58981537e-04 0.90918809e-03 0.53249055e-07 0.53046787e-03 0.4169036

Z8 -0.12990752e-07 -0.26960555e-04 0.30456698e-09 -0.84916607e-05 -0.2514702

Z9 0.45872518e-08 -0.36454880e-06 -0.12221899e-09 0.48444919e-06 0.2214466

Pressure range 0.001 - 110 MPa 0.001 - 20 MPa 0.001 - 110 MPa 0.001 - 20 MPa 0.001 - 110

Temperature range 15 - 360°C 15 - 360°C 15 - 360°C 15 - 360°C 15 - 360
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Table IV.  Polynomial Coefficients for Saturation Functions
Pressure Temperature

C
oe

ffi
ci

en
ts

 o
f

N
um

er
at

or

Y0 0.71725602e-03 -0.25048121e-05

Y1 0.22607516e-04 0.45249584e-02

Y2 0.26178556e-05 0.33551528e+00

Y3 -0.10516335e-07 0.10000000e+01

Y4 0.63167028e-09 0.12254786e+00

C
oe

ffi
ci

en
ts

 o
f

 D
en

om
in

at
or

Z0 0.10000000e+01 0.20889841e-06

Z1 -0.22460012e-02 0.11587544e-03

Z2 0.30234492e-05 0.31934455e-02

Z3 -0.32466525e-09 0.45538151e-02

Z4 0.0 0.23756593e-03

Pressure range 0.00123 - 14.59410 MPa

Temperature range 10 - 340°C
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